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ON THE PICARD VARIETIES ATTACHED TO ALGEBRAIC 

VARIETIES.* 

By JuN-IcH1 

In spite of the numerous classical investigations the theory of Picard 

varieties is not so complete as the special case of Jacobian varieties. In order 

to illustrate this circumstance, we should like to mention the problem of the 

relation between the abelian variety attached to the period matrix of the 

Picard integrals of the first kind on the given algebraic variety and its Picard 

variety. We could not find any treatment of such a fundamental problem 

in the literature.* 

Now in modern algebraic geometry we have the powerful tool of “ har- 

monic integrals,” which has been invented by de Rham and Hodge and fully 

investigated by Kodaira and de Rham recently, together with the rigorous 

foundation of algebraic geometry due to van der Waerden, Chow, Zariski and 

Weil. On the base of these achievements we shall develop a theory of Picard 

varieties which includes the complete solution of the above problem. 

In §1, we shall prove (for the sake of completeness), that continuous 

equivalence in the sense of Severi implies homological equivalence over integers. 

In § II, we shall define the Albanese variety A attached to a given variety V 

and also a skew-symmetric integral matrix #. In §III, we shall define a 

continuous family of divisors on V, which is “parametrized” by A, after 

Poincaré’s method. The Picard variety P attached to V is then defined by 

a certain “involution ” of A, which can be described by the above matrix E£. 

Our results include Weil’s duality between abelian varieties. This paper 

contains two Appendices; in the second we shall sketch a correspondence 

theory between algebraic varieties. 

While the outline of this paper was made in Tokyo in August 1949, 

I have received in writing it down at Kyoto constant encouragement and 

kind advice from Prof. Akizuki and valuable suggestions from Prof. Weil, 

to whom I wish to express my deepest appreciation. 

* Received July 12, 1950; revised June 13, 1951. 

+ Indeed these two abelian varieties have been confused by some authors perhaps 

from the fact that they coincide if the given variety is a curve. On the other hand 

I heard from Weil by his kind letter of October 19, 1949 that he had also remarked 

the distinction between the abelian variety and its Picard variety; see §III, 10 of 

this paper. 

1 



2 JUN-ICHI IGUSA. 

§I. Continuous Families and Continuous Equivalences on a 

Projective Model V. 

1. Let L” be a projective space in the algebraic geometry with the 

universal domain K of all complex numbers.? Let H"™ be a linear variety 

in L”, defined by a set of equations 

j=0 

where (wv) = (tio, Ui1,° Urn) is a set of r(n-+ 1) independent variables 

over a field & Such a linear variety was systematically used for the first 

time by van der Waerden; we shall call it a generic linear variety over k. 

Now let V4 be any compact complex analytic variety of (complex) 

dimension d in L"; by a recent result of Chow,* V is then an algebraic 

variety. We shall assume that V has no multiple point. Although we shall 

consider the case d = 2, our results hold trivially in the case d—1. In the 

following we shall assume that every field contains the smallest field of 

definition of V. 

We shall start from the following lemma, which is slightly different 

from a similar lemma of Zariski.* 

Lemma. Let L be a regular extension of a field K, and let é, n be two 

independent variables in L over K. If u is a variable over L, then L(u) ts 

regular over the field K(u)(€-+ un). 

Proof. As is readily seen, it is sufficient to consider the case where L 

is an algebraic extension over K(é,y). Let uw (1SiSN) be a set of 

N independent variables over LZ, and let K; be the algebraic closure of 

+, Uw) (€+ um) in +, uv). “Then, since 

if we take WN sufficiently large, there must exist at least one pair (1,7) (1347) 

such that K;i(é-+ um) = K,;(é-+ um). On the other hand since K; is regular 

over K(u;, -,uUv), Kj(E-+- um) is regular over K(u,- -, uy) (E+ um). 

? We shall use the results and terminology of Weil’s book: Foundations of algebraic 

geometry, American Mathematical Society Colloquium Publication no. 29 (1946). We 

shall cite this book as (F). 

°'W. L. Chow, “On compact complex analytic varieties,” this JOURNAL, Vol. 71 

(1949) ; theorem 5. We shall cite this paper as (C). 

*O. Zariski, “ Pencils on an algebraic variety and a new proof of a theorem of 

Bertini,” Transactions of the American Mathematical Society, vol. 50 (1941); lemma 5. 
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Therefore K;— um), and is regular 

over un) (&+ um); hence L(u;) is regular over K (u;) (€ + um). 

Let (x) = (2%, %1,° * *,@n) be a representative of a generic point of V 

over a field &, and say 21; let (u,---*,tn) be a set of independent 

4=1 

variables over k(x), and put uw —— > Then the equation > = 0 
j=0 

defines a generic linear variety H"* in L” over &. Concerning the section 

of V by such an H, we have the following basic result. 

Proposition 1. The intersection-product V-H is an (absolutely irre- 

ducible) variety without multiple point. 

Proof. Let x;, be a variable among the 4% (1SiS7) over k, and put 

E= um, 
04+ 

then » are independent variables over Wig-ty Un), 

hence by the above lemma, -, Un, is regular over (Uo, U1,° Un). 

Therefore the point of V with the representative (x) has a locus W over 

U1, * Un) such thatV-H =1(V-H,W)W. On the other hand, H is 

transversal to V along W, hence by the criterion of multiplicity 1, we have 

i(V-H,W) =1. Moreover by the “theorem of Bertini” on the variable 

singular points, W has no multiple point. 

By repeated use of this proposition we conclude that the intersection- 

product W*" (0=r<d) of V4 and a generic linear variety H" over a 

field & is a subvariety of V without multiple points; we shall call it a generic 

(d—r)-section of V4 over k. 

2. Now let Y be a positive r-cycle (0 rd) on V and let M be the 

coefficients of the “associated form” of Y. With Chow we shall consider M 

as a set of homogeneous coordinates of a point in a projective space; we shall 

call it the Chow point of Y. We shall also identify M with the point itself. 

By an elementary property of the Chow point,® if M’ is a specialization of 

M over a field &, there exists a rational r-cycle Y’ with the Chow point M’ 

over k(M’). It is natural to call Y’ a specialization of Y over k. Further- 

more let Y be an r-cycle on V and let Y = Y, —Y, be the reduced expression 

of Y as a difference of positive cycles Y, and Y, then if Y’, and Y’, are the 

specializations of Y, and Y. over k, we say that Y’ = Y’, — Y’, is a specializa- 

°For a systematic treatment of the Chow point see v. d. Waerden’s book: Hin- 

fiihrung in die algebraische Geometrie, Berlin (1939), §§ 36-38. 
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tion of Y over &. On the other hand let K be an extension of k over which 

both Y and Y’ are rational, and let H"™ be a generic linear variety over K. 

It can be readily seen that Y’ is a specialization of Y over k if and only if 

the 0-cycle Y’- H is a specialization of the 0-cycle Y-H over k(w), where (w) 

denotes the set of coefficients of the equations for H. Since our specialization 

of cycles is based on the point specialization, the basic properties of the usual 

specializations are valid for this general specialization; we shall show 

Proposition 2. Let U be an abstract variety defined over a field k; 

let M be a generic point of U over k and let M’ be a simple point of U. 

Let X be a rational (U X V)-cycle over k such that the V-cycle 

X(M’) = pry (X- (M’ x V)) 

is defined. Then the similar cycle X(M) has a uniquely determined specializa- 

tion X(M’) over M—>WM with reference to k. 

Proof. Let Y" be a specialization of X(M) over M—> WM’ with reference 

to k, and let K be an extension of k(M,M’) over which Y is rational; let 

H"- be generic linear variety over K. Then Y-H is a specialization of 

X(M)-H over M—>M’ with reference to k(u). On the other hand let W 

be the generic (d —r)-section of V by H over k, then we have 

X(M) = Pprw ( (Xo (M’ xX 

X(M’) -H = prw ((Xo° (M X W) 

where X») = X- (UX W). Therefore by Th. 13 of (F), Chap. VII, § 6, the 

W-cycle X(M) -H has the uniquely determined specialization X(M’) H over 

M — WW’ with reference to &(w), hence we must have Y-H = X(M’)-H. How- 

ever since Y and X(M’) are rational over K, and since H is a generic linear 

variety over K, this implies Y= X(M’), which completes ouy proof. 

Now let U, X, & and M be the same as in Proposition 2. but U be in the 

following a complete variety; then the specialization of X(M) over k con- 

stitute what we call the continuous family determined by X on V, or shortly 

the continuous family X. It can be readily verified that this definition does 

not depend on the choice of & and M, when X is given. Moreover we can 

and shall assume that every component of X has the projection U on U. We 

say that two r-cycles Y and Y’ on V are continuously equivalent, if there 

exists a series of r-cycles Y = Y;, Yo,- -, = Y’, a series of complete 

non-singular curves [,,f.,---,Fy and a series of (Fi; V)-cycles X, 

such that 

Yi= pry (Xi (MiXV)), =pry(X- V)), 
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where M; and M’; are the points of [; for 1 =i N. The continuous equi- 

valence is thus an equivalence relation in the set of all r-cycles on V. 

Moreover since the points M; and M’; are homologous on Fj, the products 

M; X V and M’; X V are homologous on F; X V. Therefore the intersection 

products X;-(M; < V) and X;-(M’; X V) are homologous on I; X V, and their 

algebraic projections Y; and Yi, on V are homologous on V. It follows, 

finally that 
N 

¥ 
4=1 

is homologous to 0 on V. Here the homologies are taken over Z;° and all 

these follow from the topological intersection-theory.” 

3. Now we shall connect our two notions by the following assertion. 

THEOREM 1. Any two cycles in the same continuous family on V are 

continwously equivalent. 

Proof. We shall use the same notations as before. Let Y be any 

specialization of X(M) over k; we have only to show that they are con- 

tinuously equivalent. Since U is a complete variety, there exists a point M’ 

on U such that Y is a specialization of X(M) over M— WM’ with reference 

to k. We shall first assume that U is a curve and let F be derived from U 

by normalization with reference to &; then F is a complete non-singular curve, 

which corresponds to U by a birational correspondence T over &. Let MX M* 

be the generic point of T over & with the projection M on U; and let M*’ be 

a specialization of M* over the specialization X(M)—>Y, M—M’ with 

reference to k. If we interchange the second and the third factors of the 

product U xT x V X V, its subvariety T X A corresponds biregularly to a 

birational correspondence Z between U X V and F Xx V. Since Z is biregular 

along every component of X, the intersection-product Z-(X XF XV) is 

defined; we put X* =—prpyy(Z:-(X X FX V)). Then it can be readily 

verified that we have 

X*(M*) = pry (X*- (M* x V)) = X(M). 

Moreover since every component of X* has the projection F on I, the 

intersection-product X*- (M*’ x V) is defined. Therefore by the previous 

* As in Bourbaki we shall denote by Z the ring of rational integers and by Q its 

field of quotients. 

7 Cf. S. Lefschetz, Topology, American Mathematical Society Colloquium Publica- 

tion no. 12 (1930). 
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tion of Y over k. On the other hand let K be an extension of k over which 

both Y and Y’ are rational, and let H"™ be a generic linear variety over K. 

It can be readily seen that Y’ is a specialization of Y over k if and only if 

the 0-cycle Y’- H is a specialization of the 0-cycle Y-H over k(w), where (w) 

denotes the set of coefficients of the equations for H. Since our specialization 

of cycles is based on the point specialization, the basic properties of the usual 

specializations are valid for this general specialization; we shall show 

Proposition 2. Let U be an abstract variety defined over a field k; 

let M be a generic point of U over k and let M’ be a simple point of U. 

Let X be a rational (U X V)-cycle over k such that the V-cycle 

X(M’) = pry (M’ Xx V)) 
is defined. Then the similar cycle X(M) has a uniquely determined specializa- 

tion X(M’) over M—>WM’ with reference to k. 

Proof. Let Y" be a specialization of X(M) over M—> WM with reference 

to k, and let K be an extension of &(M,M’) over which Y is rational; let 

H" be generic linear variety over K. Then Y-H is a specialization of 

X(M)-H over M—>WM’ with reference to k(u). On the other hand let W 

be the generic (d—r)-section of V by H over k, then we have 

X(M) = ((Xo° (M’ xX W))uxw)> 

X(M’) = prw ((Xo° (M X W)) 

where X= X-(U X W). Therefore by Th. 13 of (F), Chap. VII, § 6, the 

W-cycle X(M) -H has the uniquely determined specialization X(M’) -H over 

M — MW with reference to k(w), hence we must have Y- H = X(M’)-H. How- 

ever since Y and X(M’) are rational over K, and since H is a generic linear 

variety over K, this implies Y= X(M’), which completes our proof. 

Now let U, X, & and M be the same as in Proposition 2. but U be in the 

following a complete variety; then the specialization of X(M) over & con- 

stitute what we call the continuous family determined by X on V, or shortly 

the continuous family X. It can be readily verified that this definition does 

not depend on the choice of k and M, when X is given. Moreover we can 

and shall assume that every component of X has the projection U on U. We 

say that two r-cycles Y and Y’ on V are continuously equivalent, if there 

exists a series of r-cycles Y = Y;, Yo,- - -, Yys1 = Y’, a series of complete 

non-singular curves [,,F2,---,fy and a series of (Ff; V)-cycles X, 

such that 

Yi = pry (Xi: (Mi X V)), Yiu =pry(X: (Mix V)), 

© > & 

Ww 

t 
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where M; and M’; are the points of F; for 1 =i N. The continuous equi- 

valence is thus an equivalence relation in the set of all r-cycles on V. 

Moreover since the points M; and M‘; are homologous on [;, the products 

M; X V and M’; X V are homologous on F; X V. Therefore the intersection 

products X;-(M; X V) and X;-(M’; X V) are homologous on I; X V, and their 

algebraic projections Y; and Yj, on V are homologous on V. It follows, 

finally that 
N 

is homologous to 0 on V. Here the homologies are taken over Z;° and all 

these follow from the topological intersection-theory.’ 

8. Now we shall connect our two notions by the following assertion. 

THEOREM 1. Any two cycles in the same continuous family on V are 

continwously equivalent. 

Proof. We shall use the same notations as before. Let Y be any 

specialization of X(M) over &; we have only to show that they are con- 

tinuously equivalent. Since U is a complete variety, there exists a point M’ 

on U such that Y is a specialization of X(M) over M—WM’ with reference 

to k. We shall first assume that U is a curve and let F be derived from U 

by normalization with reference to &; then F is a complete non-singular curve, 

which corresponds to U by a birational correspondence T over &. Let MX M* 

be the generic point of T over & with the projection M on U; and let M*’ be 

a specialization of M* over the specialization X(M)>Y, M—>M with 

reference to k. If we interchange the second and the third factors of the 

product U xT x V X V, its subvariety T X A corresponds biregularly to a 

birational correspondence Z between U X V and F X V. Since Z is biregular 

along every component of X, the intersection-product Z-(X XF XV) is 

defined; we put X*=—prryy(Z:(X XF XV)). Then it can be readily 

verified that we have 

X*(M*) = pry (X*- (M* x V)) = X(M). 

Moreover since every component of X* has the projection F on [, the 

intersection-product X*- (M*’ x V) is defined. Therefore by the previous 

* As in Bourbaki we shall denote by Z the ring of rational integers and by Q its 

field of quotients. 

7Cf. S. Lefschetz, Topology, American Mathematical Society Colloquium Publica- 

tion no. 12 (1930). 
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proposition, its algebraic projection X*(M*’) on V is the uniquely deter- 

mined specialization of X(M) over M* > M* with reference to &. Since 

Y is also the specialization of X(M) over the same specialization, we must 

have Y = X*(M*’). Hence Y and X(M) are continuously equivalent. 

Now we shall prove that X(M) and X(M’) are continuously equivalent, 

whenever M and MW’ are generic points of U* over k. Since this is true for 

s = 1, we can use induction on s assuming s= 2. By taking another generic 

point of U over k(M,M’), if necessary, we may assume that M and MW’ are 

already independent over k. Let U, (x) and (z2’) be a set of representatives 

of U, M and MW’ in the same ambient space 8”; let (w*) = +, Um“) 

(a= 0,1) be two sets of 2m independent variables over k(x, 2’) and put 

m m 

i=1 

Then the equations 3 ueiX, + v* = 0 define two linear varieties H,”-* in S™ 
4=1 

such that the intersection-products —U-H, are (absolutely irreducible) 

varieties. Moreover the intersection-product W =U - H,: H, is, at least, a 

prime rational U-cycle over k(u®, v°, u*,v*); and a generic point N of W 

over this field is a generic point of W, over k(u%, v*) for «—0,1. Now 

let W,* and N be the subvarieties of U*, which have the representatives Wa 

and N in U; since the components of XN (W. xX V), which have the pro- 

jection W, on U, are all proper, we can form a (W, X V)-cycle X, by such 

components. Then we have 

Xo(M) = pry ((Xo° (M xX V)) wexv) = X(M), 

Xo(N) = X(N) =Xi(N), X1(M’) = X(M) ; 

therefore by the induction assumption, X(M) and X(M’) are continuously 

equivalent. 

Finally, even if M’ is not a generic point of U over &, we may assume 

that Y is the uniquely determined specialization of X(M) over M>M 

with reference to k. Otherwise let M* and M*’ be the Chow points of X(M) 

and Y; since M* is rational over k(M), it has a locus U* over &. Moreover, 

since X(M) is rational over k(M*), there exists a rational (U* & V)-cycle 

X* over k, every component of which has the projection U* on U*, such that 

X*(M*) = pry (X*- (M* V)) = X(M). 

Then we have only to replace U, X and M’ by U*, X* and M*’. Now by 

Prop. 7 of (F), Appendix II, there exists a generic specialization N of M 
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over k and an extension K of k such that N has a locus U, of dimension 1 

over K containing M’. As before let X, be the (U, X V)-cycle composed 

of those components of X 1(U, X V), which have the projection U, on U; 

we then have 

Xo(N) Pry ((Xo° (N x V)) uxv ) = X(N). 

By assumption, Y is also the specialization of X(N) over N-M’ with 

reference to K. Therefore since U, is a curve, Y and X(N), and so, by our 

second step, Y and X(M) are continuously equivalent. 

§ II. Continuous Family of Curves in V. 

4. Let W' be a generic 1-section of V over a field & and let M be the 

Chow point of W*. Since W?! is defined over a purely transcendental 

extension of k, k(M) is regular over & and M has a locus U over k. 

Moreover there exists a rational (U X V)-cycle C over k, every component 

of which has the projection U on U, such that 

C(M) = pry (C: (Mx V)) 

Since W? is a variety, C must also be a variety; we shall study the properties 

of this continuous family in V with a “generic curve” C(M) over k. 

A differential form or a differential ® on V, which can be expressed in 

the form = - /\ dz,, where the coefficients F;,.. i,(2) 

and the “uniformizing parameters” z,,- - -,2q are (algebraic) functions on 

V4, will be called an algebraic differential of degree s on V. Here /\ denotes 

Grassmann multiplication. An algebraic differential of degree 1 on V will be 

called a Picard differential on V. It can be proved easily by the last’ corollary 

in (C) that in the above definition we have only to assume that the coefficients 

F;,..4,(2) are meromorphic in 2,- - for every choice of z,,---,24. If 

Fi,...4,(2) are always regular analytic in z,, -, Za, ® is said to be of the first 

kind. It is then a complex harmonic form in the sense of Hodge on the 

compact manifold V with a “natural” Kahlerian metric.® 

THEOREM 2. The set of linearly independent Picard differentials of the 

first kind on V remains linearly independent on each generic curve C(M) 

over k. 

*Cf. W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge 

University Press (1941); Chap. IV. We shall cite this book as (H). The theorem 

which is stated above is implicite in (H), but can be proved as follows. By the special 

nature of the Kahlerian metric, the “dual form” of every algebraic differential of the 

first kind is exact. Therefore if ® is such a form, d® and its dual form are both exact. 

This shows precisely that d® is harmonic. Since it is at the same time a derived form, 
we have = 0. 
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We shall give the “analytic” proof of Theorem 2 at the end of this 

section, and at presert, we shall derive some of its consequences. Let p be the 

genus of C(M); since the generic curves are the transforms of one another 

in the sense of (F), Chap. VII, § 2, p does not depend on M. Moreover by 

Theorem 2, we can find a base of the Picard differentials of the first kind 

on V 

= (#1, Be, By) (p=q=0); 

the number q is called the irregularity of V. 

We shall denote by §"(V,Z) or $"(V,Q) the r-dimensional homology 

group of V modulo Z or Q, and by R’(V) the rank of §"(V,Q). Hodge ® 

gave an elegant proof of the classical theorem that R1(V) —2q. Now let 

Y2q 8: be a base of $1(V,Z), where (y) = (y1, y2,° Yea) 

is a base of the 1-dimensional Betti group 8(V) of V moduloZ and where 

8,, 5.,- - -, 8; are torsion cycles. Although the torsion cycles are absent if V 

is a curve, they actually appear in the general case. It is clear that the 

period matrix of the “Picard integrals” (®, (lSa=q) 

along the 1-cycles y, (11S 2q), is determined by V up to an “ isomor- 

phism ” »—> Awl, where A is a non-singular K-matrix of degree q, and L 

a unimodular Z-matrix of degree 2g. 

On the other hand, let (a) = (a1, be a base of §1(C(M), Z). 

Then there exists a uniquely determined Z-matrix A of type (2q,2p) such 

that («#) ~ (y)A (mod.Q). In this paper the skew-symmetric Z-matrix 

Ey =A'tl,1tA plays an important réle,*° where J, means the unimodular 

Z-matrix of Kronecker indices I(a,«;;C(M)) on C(M). It can be readily 

verified that H,, does not depend on the choice of the base (a), if the base 

(y) and the generic curve C(M) over & are given. We shall see later 

that Ey does not depend on M. 

5. Applying the celebrated theorem of Poincaré in the theory of 

“reducible integrals ” 74 to the above circumstances, we can find a base (8) 

of §1(C(M), Q), which is composed of “invariant cycles” B;~y; (mod. Q) 

°Cf. (H), § 49. See also his original proof: “ Harmonic integrals associated with 

algebraic varieties,” Proceedings of the London Mathematical Society, vol. 39 (1935). 

1° Let M be a matrix with any coefficients, then ‘M means the transposed matrix 

of M. Moreover if M is a K-matrix, we shall denote by M the image of M by the 

involutive automorphism of K over the real field. 

Cf. O. Zariski, Algebraic surfaces, Ergebnisse der Mathematik (1935), Chap. 

VII, § 6. 

t 

| 
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(tS 2q), and of “vanishing cycles” 8; ~0 (in Vmod.Q) (1 > 2q), such 

that if we define a square Q-matrix B of degree 2p by 

(a) ~(8)B (on C(M) mod. Q), 

t7 -1t | Em Btl 0 ): 

Moreover we can find a “complementary set” of Abelian integrals f® 1, 

++, on C(M) such that the period matrix Og of (lSaSp) 

along the 1-cycles 8; (11S 2p) splits in the following form: 

It follows that ‘Hy ——LHy is a “principal matrix” of the “ Riemann 

matrix” w. 

Now the 2q columns of w generate a discrete subgroup [w] of rank 2q 

in the complex vector space 8%, and therefore the factor group S%/[w] is a 

complex toroid of (complex) dimension g. Moreover, since w is shown to be 

a Riemann matrix, we see that this coniplex toroid is mapped in a one-to-one 

way to a non-singular variety A? in a suitable projective space by means of 

theta functions = @(v,,° -, vq), belonging to It then follows 

from (C) that A? is an abelian variety in the sense of Weil *; following him 

we shall call A the Albanese variety attached to V. Since the period matrix o 

is determined up to an isomorphism, A is determined up to an isomorphism 

in the sense of (V) by our projective model V. We shall see later that A 

is attached to V in a birationally invariant way. 

6. Now we shall prove our Theorem 2. There exists, by (H), Chap. IV, 

a harmonic 2-form y in L” such that f v= 1, where D is any projective 
D 

1-space in L”. y induces a similar form on V, which we shall denote by the 

same letter; and we shall show that v and the generic (d—1)-section 

W =V-H of V@ are homologous in the sense of de Rham. 

Lemma. Let Z be any topological 2-cycle in V. Then f v=I1(Z,W;V). 
Z 

12 Cf. S. Lefschetz, “On certain numerical invariants of algebraic varieties with 

applications to abelian verieties,” Transactions of the American Mathematical Society, 

vol. 22 (1921). 

13 A. Weil, “ Variétés abeliennes et courbes algébriques,” Actualité Scientifiques et 

Industrielles, no. 1064 (1948). We cite this book as (V). 
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Proof. Since we have f v=I(Z,H), it is sufficient to show that the 
Z 

equality Z-H=(Z-(V-H))y. Thereby we may assume that Z is at least 

“ differentiable ” in the neighborhoods of the points in ZMH and that Z is 

transversal to H at these points. Then our formula surely holds locally, 

hence in the large.** 

Now we can prove the following remarkable fact, which was discovered 

by Lefschetz.*® 

Proposition 3. Let Z,,: = R***(V)) be a base of Q) 

(OSrsd). Then the r-cycles 

T;= (Z4;:W)y BR) 

on the generic r-section W of V4 are independent as cycles in V modulo Q. 

Proof. By Hodge’s existence theorem ** there exists a set of harmonic 

r-forms in V such that $i—=1(Z,T;V) for 
every topological r-cycle [T. Consider the harmonic 2(d—r)-form va, 

=v/\--:-/v ((d—r)-factors). Then by Theorem III and by Lemma C, 

§42 in (H), we conclude that the harmonic (2r—r)-forms ¢; A va+ 

(1=1=R) are linearly independent. By de Rham’s theorem, however, 

di var =1(T;,2;V) for every topological (2d — r)-cycle 
Z 

Z; our proposition follows from this fact. 

Corotuary. Every topological r-cycle in V4 (0S is homologous 

to some cycle on the generic s-section W* of V (s=r) modulo Q. 

Theorem 2 is now a simple consequence of this corollary in the case of 

r==s=1. However a purely algebraic proof for this theorem is greatly to 

be desited. 

§III. Poincaré Family and Picard Variety Attached to V. 

7. We shall start from the following qg “Abelian sums ” 

q Pi 

Dy = Ve 
4=1 

14 See loc. cit. 7. 

18S. Lefshetz, L’analysis situs et la géométrie algébrique, Paris (1924), Chap. V. 

16 Cf. K. Kodaira, “Harmonic fields in Riemannian manifolds,” Annals of Mathe- 

matics, vol. 50 (1949). 

10 
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where P,,---,P, are q points in V. If we restrict these points to the 

generic curve C(M) over &, we get an analytic mapping from the product 

C(M) =C(M) X-- C(M) (q-factors) into the complex toroid 

which we shall denote by ©, in a natural way. 

Proposition 4. The image © of C(M) covers the whole of , and 

covers in general exactly q!ey -times; where ey denotes the “Pfaffian” 

of Ey. 

Proof. Let P;,- + +,Pq be a set of g distinct points on C(M) ; we shall 

show that the Jacobian of our mapping does not vanish there identically. 

In fact let z,,- - -, 2, be the uniformizing parameters of C(M) at P,,---,P, 

respectively ; then in the contrary case we have det | ®,(xg)| = 0, identically 

in %,°**,2%g. This, however, would contradict the linear independence of 

®,,- - -,&, on C(M). Therefore if we regard @ as a compact connected 

“covering variety” of @, its projection on © contains an open set of . 

Since the projection # of the points of ® on ®, at which the Jacobian 

vanishes, forms an analytic bunch of (¢g—1) (complex) dimensions (at 

most) in ®, its complement o — ¥ is connected. Our proposition follows 

from this fact except for the exact value of the covering; and this crucial 

result can be proved by Wirtinger’s method 1” as follows. 

Let m(@) and m(®) be the “volumes” of @ and ® respectively; 

and put 

+ isa (1<a<q). 
Then it can be readily seen that 

where ¢ means the “ boundary integral ” on the Riemann surface of C(M). 

Therefore we have 

4 j 

where ¢; (11,7 2q) are the coefficients of Hy ; hence m(®):m(@) 

=q!(det which completes the proof. 

17W. Wirtinger, “ Zur Theorie der 2n-fach periodischen Funktionen,” Monatshefte 

fiir Mathematik, Bd. 7 (1896). 

= 
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Now if we introduce a function ® on V by writing 

®(P) f f %), 

the function $ on V=V X- XV (q-factors) 

q Ps qd Ps 

can be written in the form 

q 

5(P,,-- -,P,) 

where the right side refers to the group variety A. The fact that ® and 

hence also & are (algebraic) functions follows from (C) Theorem 7. If M 

is a generic point of U over a common field of definition K of C, , A and 

of the composition function in A, the functions ® and @ induce the function 

¢ and ¢ on C(M) and C(M) respectively, such that their graphs are related 

as follows: 

Hence, using Proposition 4, we can obtain the following result, which is well 

known if V is a curve. 

THEOREM 3. There exists a function ® on V with values in the Albanese 

variety A® attached to V. Moreover on each generic curve C(M) over K, ® 

induces a function } such that if P:,- - -, Pg are q independent generic points 

of C(M) over K(M), then the point z —>4(Pi), is a generic point of A 

over K(M) and satisfies y 

where K(M)(P;,- - -,Pq)s is the invariant subfield of K(M) (Pi,- - -, Pa) 

by q! permutations of P,,- - -, Py. 

We conclude from this theorem that <«, does not depend on the choice 

of C(M) ; hence we may write it as «. 

Now the point z XP, say, in the product AX V is rational over 

K(M, P,,- > -, Pq); hence K(z, P,) is regular over K and z X P, has a locus X 

over K. Moreover the V-cycle X(z) = pry (X-(z X V)) is prime rational 

over K(z) and has a non-empty intersection with the generic curve C(M) 

over K(z). Since P, is algebraic over K(M,z), X(z) is a prime rational 

V-divisor over K(z); and the intersection-product X(z)-C(M) is a prime 

q 

a 

q 
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rational C(M)-divisor over K(M,z). On the other hand, the C(M)- 

divisor PT omy (2) ) consists of ge conjugate points of P, over K(M,z), 

each being repeated (q¢—1) !-times; therefore we have 

X(z)-C(M) =1/(¢—1)! PT omy (2) ). 

For historical reasons we shall attach the name of Poincaré family to this 

continuous family X. If Y is a member of the Poincaré family and if 7 is 

the specialization of z over the specialization X(z) — Y with reference to K, 

we shall write Y= X(z’). Since such X(z’) are continuously equivalent in 

the sense of § I, 2, they are homologous to each other modulo Z. 

8. Ifa V-divisor Y is homologous to 0 modulo Q, there exists a Picard 

differential of the “third kind” © on V with the “residue” Y. This is 

known as Lefschetz’s theorem ** and proved elegantly by We may 

assume that the real part of the integral of © is one-valued on V, for other- 

wise we have only to add a suitable linear combination of ®. (1S aq) 

to v. Now let 3 be any torsion 1-cycle in V such that m8 ~0 (mod. Z) ; 

let C be a 2-chain over Z with the boundary més. Then it can be readily 

seen from Stokes theorem that 

f — 2ni/mI(C, Y;V) 2niL (3, Y;V), 
5 

where (8, Y; V) denotes the linking coefficient of § and Y on V. Therefore 
P 

if we put F'(P) = exp( f v), F is meromorphic on V; and if we continue 

F analytically along a continuous closed path © in V, F is multiplied by a 

constant factor yy(T) of absolute value 1, which depends on the homology 

class of T modulo Z only. Now by the preparation theorem of Weierstrass,”° 

we can define the V-divisor (/) for such a “multiplicative function” F 

on V, and we have (F) =Y. Since the Picard integral of the first kind 

with pure imaginary periods must be a constant (as follows from the fact 

that » is a Riemann matrix), F is uniquely determined up to a constant 

factor by Y. Therefore each Y determines wniquely a character xyy(T) of 

the discrete group $1(V,Z). For a torsion cycle 6, we have 

xy (8) = exp(2miL (8, Y;V)); 

18 Cf. loc. cit. 15, note I. 

19 A. Weil, “ Sur la théorie des formes différentielles attaché & une variété analy- 

tique complexe,” Comment. Math. Helv., vol. 20 (1947). 
2° Cf. S. Bochner and W. T. Martin, Several complex variables, Princeton University 

Press (1948), Chap. IX. : 

i 
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hence xy(8) 1, whenever Y is homologous to 0 modulo Z. Such a Y 

thus induces a character of the Betti group 6(V); and the difference 

Y = X(z) — X(z’) is surely such a V-divisor. In this case we shall obtain 

an explicit formula of the character 

(xy (y)) = x¥ (yee) )- 

9. We may first assume, by taking a suitable extension of K if necesary, 

that X(z’) is rational over K. Let LZ be an extension of K over which X(z) 

is rational and let M and w be independent generic points of U and A over L. 

Then the intersection-products X(z)-C(M) and X(w)-C(M) are defined, 

and by definition the former is a specialization of the latter over w—>z with 

reference to L(M). On the other hand we have 

"Ms X(w) -C(M) => 
i=1 j 1 

with > 4(Q,) =w (1S1Sec) by Theorem 3. Hence we may write 

X(z)-C(M) in the form 

X(z)-C(M) = 
4=1 j=1 

where (-- -,Pi;,- - -) is the specialization of (- - -,Qy,---) over 

with reference to L(M). Since the (algebraic) function w = (Qu, - - -, Qig) 

s “defined” at (Pi,---,Piq), the “value” of @ at this point is the 

uniquely determined specialization of w over Pig) 

with reference to L(M). We therefore have 

qd "Pe 

j=1 j=1 

Similarly X(z’) -C(M) can be written in the form ; 

X(z’) -C(M) SP 
4=1 j=1 

and we have 

qa qd P’43 

j= =. 

Therefore if z— 7’ has the “coordinates ” (v), then 

where (®) = - :,@g). 

} 
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Now the multiplicative function / on V induces a similar function f on 

C(M) such that 

(f) = (F)-C(M) = X(z) -C(M) — X(z’) -C(M). 

But since (y1,° *,y2q0,: ~ (B) ~ (@):B" (mod. Q), it follows 

that if e is a natural number which makes eB into a Z-matrix, and if 

($(«%)) = (6(a1), $(@2),° *,6(%p)) is a base of the harmonic 1-forms 

on C(M), which is homologous to («) in the sense of de Rham, then 

we have 
Pij 

(xy (vy) (0)? —exp(2ri ($(a) ) (eB-*) ).?2 

On the other hand there exists a K-matrix X of type (p,2p) such that 

($(a)) = (26)(7), where (®) has p columns. By integrating this 

4 P 
equation, we get I, = if we put > == (v*), 

aj P’s 

we have 

(xr (1) exp (6B). 
Now there exists a real vector (m’) with 2p columns such that (v*) = (m’)'Og,; 

and we have 

(xy (y) £1) exp (2aie(m’) (Bla#B)+ 

= exp (2ie(m’) (| 

Therefore if we denote by (m) a real vector with 2q columns such that 

(v) = (m)*'w, we have 

(xy (y)*) = exp (2atee(m)' By). 

Now we may take as 2 every generic point of A over K(M) ; such points 

are everywher dense in A. However since (xy(y)) and exp(2mie(m)*Hy-*) 

both depend continuously on z,?? and they approach (1), if z approaches 7’, 

we have 

(xy (y)) = 

*1 Cf. H. Weyl, Die Idee der Riemannschen Flache, Berlin (1913), Kap. II, §§ 16-17. 
See also J. Igusa, “ Zur klassischen Theorie der algebraischen Funktionen,” Journal of 

the Mathematical Society of Japan, vol. 1 (1948). 

*? That the first character depend continuously upon z can be proved rigorously by 

Kodaira’s generalization of Weyl’s formula: Green’s formula and meromorphic functions 

on compact analytic varieties, to appear in the Canadian Journal of Mathematics. 
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Thereby we write H instead of Hy , since it does not depend on the choice 

of C(M). In fact this follows from the above formula, if we remember that 

(xy(y)), € and (m) are independent of C(M). 

10. On the other hand if we replace the period matrix w by o = we'H, 

[w] is a subgroup of index «4? in the similar group [6]. Moreover since ® 

is also a Riemann matrix, there exists an abelian variety P in a suitable 

projective space, which is isomorphic with S%/[é] as complex toroids, and a 

homomorphism A from A to ? such that A@(v) —0 if and only if (v) is 

contained in [4]. If we define a real vector (r) with 2q columns by 

(v) = (r)*, we have (xy(y)) =exp(2zi(r)). Therefore if we denote by 

@,(V) the group of V-divisors, which are linearly equivalent to 0 in V, then 

X (41) =X(z2) (mod. G:(V)) if and only if —=A(z,). This abelian 

variety P is the same as the Picard variety attached to V in the sense of the 

Italian geometers. 

It follows from the above results that if a V-divisor Y is homologous 

to 0 modulo Z, we can find a V-divisor X(z) — X(2), which induces the 

same character on $(V) as Y. Then, by the definition of the character, 

Y is linearly equivalent to X(z) — X(z’). Since linear equivalence implies 

continuous equivalence in the sense of § I, 2, and since X(z) is continuously 

equivalent to X(z’), by Theorem 1, we see readily that Y is continuously 

equivalent to 0. As we have remarked in §I, 2, however, continuous equi- 

valence implies the homological equivalence modulo Z; thus we can state 

THEOREM 4. In the case of divisors on the projective model, the con- 

tinuous equivalence and the homological equivalence modulo Z are the same.”* 

This theorem was first proved by Lefschetz ** essentially along the same 

line as above. We shall denote by ©,(V) the group of V-divisors, which is 

23 Tf and &’,,,(Va) correspond to the complete variety Va without multiple 

point (r= dim(V.) ) by the “ strictest equivalence theories ” satisfying (A), (B), (C’), 

(D), (E), (S) and (A), (D), (E),-(S) of (F), Chap. IX, §7 respectively, we have 

G*,,(V) = G*,,(V) @.(V). 

In fact if G",(V<) corresponds to Va by the homological equivalence theory over Z, 

it is an equivalence theory satisfying (A), (B), (C’), (D), (E) and (S); hence 

Gro(Va) C G'w(Va) C 

for every Va. Moreover by the same arguments as in §I, 2, we have 

C 

and @*(V) = G.(V) by Theorem 4. 

*4 Cf. loc. cit. 15, Chap. IV. 

| 

q 



ON PICARD VARIETIES. sig 

defined by the continuous equivalence on V, and we shall resume our main 

results, which include the classical “ inversion theorem ” of Jacobi, as follows. 

THEOREM 5. We can attach two abelian varieties, the Albanese variety 

A and the Picard variety P, to every non-singular projective model V. P is 

obtained by a homomorphism from A, which corresponds to the division of 

the period matrix of the Picard integrals of the first kind on V by one of 

its principal matrices. Moreover, P is isomorphic with the factor group 

G.(V)/Gi(V), and this is dually paired with the Betti group B(V) by the 

multiplication rule 

G.(V)3 
B(V)3y Y*y¥=xy(y)- 

In addition every element of &.(V)/@i(V) has a representative of the form 

X(z) — X(2’) with deg. X(z) = deg. X(2’) = ge. 

On the other hand if we introduce a square real matrix J of degree 

2q by io—wJ, then an isomorphism w»— induces an isomorphism 

J—LI“JL. Conversely » is determined up to a special isomorphism 

w—Aw by J. This matrix J is explicitly introduced in the theory of 

complex toroids by Weil 7°; hence it may be called the Weil matrix attached 

tow. A real matrix J is a Weil matrix if and only if J? = —1 and if there 

exists a skew-symmetric Q-matrix # such that HJ is symmetric and definite. 

On the other hand a Q-matrix S satisfies the relation wStw = 0 if and only if 

| ) commutes with (*) 5 0 @ 

hence if and only if S satisfies the equation JS'‘J =. In particular we 

have It follows therefore that 

16 = wet = Wet Hh = wt = 

Thus we get the following result. 

Corotuary. If J is the Weil matrix attached to w, then tJ-* is the Weil 

matric attached to 6. 

Now we shall consider the Picard variety of an abelian variety. First 

of all, if V@ is an abelian variety, the Albanese variety A® attached to V is 

isomorphic with V. In fact there exists a K-matrix » of type (d,2d) such 

that the kernel of the homomorphism h from the universal covering group S4 

25 A. Weil, “ Théorémes fondamentaux de la théorie des fonctions théta,” Seminaire 

Bourbaki (Mai, 1949). 

2 
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of V4 onto V coincides with [w]. Then if we denote by (v:,- --,va) the 

complex coordinates in 8%, their differentials dv, = dvg(h(P)) (1S ad) 

are linearly independent Picard differentials of the first kind on V, which 

form a base of such differentials since R'(V) = 2d. Moreover, since they 

have the period matrix w (along a set of suitable 1-cycles in V), A is 

isomorphic with S*/[w], hence with V. It follows from this fact and from 

the above corollary that the Picard variety P attached to the given variety V 

is also attached to the Albanese variety A of V as its Picard variety. Since 

the operation J — *J~ in the same corollary is involutive, we get the following 

duality of Weil: The Picard variety of an abelian variety V is not V, but 

another abelian variety V’; the Picard variety of V’ is then V, and there ¢s 

a kind of duality between them. 

The following figure shows the relations of various varieties, which appear 

in our theory. 

A (its own Albanese variety) 
Albanese It 

Picard variety 
Picard” variety. 

(its own Albanese variety) 

11. Until now we have fixed our projective model V; we shall discuss 

therefore in what manner our theory depends on the choice of it. Let V’ be 

another non-singular projective model, which is equivalent to V by a birational 

correspondence T. Then there exists a bunch @ of (d—1) (complex) 

dimension (at most) on V4 such that T is biregular at every point of V— B. 

Moreover there exist a bunch ¥ of (complex) dimension at most (d— 2) 

on V such that the projection from T to V is regular at every point of V— #. 

Therefore T induces an isomorphism of the Poincaré group of V onto that 

of V’. This fact was remarked explicitly for the first time by Ehresmann on 

the last page of his thesis. 

On the other hand let ®’(P’) be any algebraic differental of the first 

kind on V’. Then the differential 6(P) —©#’(T(P)) on V is also of the 

first kind. This was proved (explicitly) by Kahler ?*; and the main idea 

is as follows. If ® is not of the first kind, it has at least one “pole” Y 

on V; but since T(P) is regular along Y, #’(T(P)) is finite along Y, a 

contradiction. 

2° BH. Kahler, “ Forme differentiali e funzioni algebriche,” Mem. Accad. Ital. Mat., 

vol. 3 (1932). Cf. also S. Koizumi, “On the differential forms of the first kind on 

algebraic varieties,” Journal of the Mathematical Society of Japan, vol. I (1949). 

j 
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Therefore if w is the period matrix of the Picard integrals of the first 

kind on V, it is also a similar matrix for V’. We have thus arrived at the 

following result. 

THEorEM 6. If A and A’ are the Albanese varieties attached to V and 

V’ respectively, then they are isomorphic. 

A simple consequence of this theorem and corollary to Theorem 5 is 

THEOREM 7. Jf P and P’ are the Picard varieties attached to V and V’ 

respectively, then they are isomorphic. 

We add two Appendices in which, it is hoped, a fairly complete theory 

of divisors on a non-singular projective model will be established. 

Apendix I. Numerical Equivalence and the Lefschetz Number. 

We shall first obtain a duality theorem including the torsion cycles. 

By a duality of Poincaré, the 1-dimensional torsion group of V@ is isomorphic 

with the (2d — 2)-dimensional torsion group of V. This duality is based 

on the fact that we can select the “dual bases” 8,,- - -,8& and Y;,---, Y; 

of the torsion groups of 1 and (2d — 2)-dimensions respectively such that 

L (8, ¥53 = 

where m; means the common order of 8; and Y; for 1=7¢#. Moreover by 

the Lefschetz-Hodge theorem in (H), § 51. 2, we may assume that Y; are all 

(algebraic) V-divisors. Since Y; is homologous to 0 modulo Q, there exists 

a multiplicative function F; on V such that (F;) = Y; for 1 SiSt; and 

we have 

xy: = exp (134751). 

Therefore if we denote by @,(V) the group of V-divisors, which are homo- 

logous to 0 modulo Q, we have the following duality theorem. 

The factor group @©»(V)/Gi(V) is dually paired with the homology 

group $'(V,Z) by the multiplication rule 

@.(V) 3Y 
Y-T=yy(P). 

It follows that the group ©,(V)/@:(V) does not depend on the choice 

of the projective model V. 
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Now we shall show that the group &,(V) coincides with the set of V- 

divisors, which are numerically equivalent to 0. A V-divisor Y is defined 

to be numerically equivalent to 0, if it satisfies T(Y,f;V) —0 for every 

algebraic 1-cycle F in V. Since the Kronecker index is always defined, the 

numerical equivalence defines a group of V-divisors. We note also that the 

homological equivalence modulo Q is broader than the continuous equivalence 

and is stricter than the numerical equivalence. 

Let @(V) be the group of all V-divisors, then the factor group 

G(V)/G,(V) has a finite number p(V) of independent generators Z,,- - -, Zp 

such that p(V) = R°4*(V) = R?(V). Moreover by Proposition 3, if W? is 

a generic 2-section of V.over a common field of definition of Z,,- - -, Zp, 

then T; = Z;- W? (1 Si Sp) are independent algebraic 1-cycles in V modulo 

Q. It can be readily seen by Lefschetz’s theorem and by Hodge’s extension 

of Poincaré’s theorem in (H), § 50 that we can find a set of algebraic 1-cycles 

Tr’; on the surface W, which are homologous to 0 in V modulo Q, such that 

[; and [’; form a base of algebraic 1-cycles on W modulo Q and such that 

T(;,1;;.W) 0. Then it follows from Severi’s theorem that the inter- 

section matrix 

= Fi; W)) 

is non-singular. On the other hand any V-divisor Y can be written uniquely 

in the form 

Y~SaZ, (in V mod. Q) 

with Z-coefficients a; (1Sip). If Y is numerically equivalent to 0, 
p 

so is } a;Z;, hence by what we have just proved, this must be 0; which proves 
i= 

the assertion. 

The integer p(V) is called the Picard number of V4; we shall call the 

difference +(V) = R®4#*(V) —p(V) the Lefschetz number of V, and we 

shall prove its absolute invariance. Let Z,,Z2,---,Z, be a base of the 

“transcendental ” (2d — 2)-cycles in V, then T; = Z;-W? (1 form 

a base of the transcendental 2-cycles in V. Therefore by a similar argument 

as in (H), $51.2, we have, for every algebraic differential of degree 2 of 

the first kind @ in V, 

> al; 
i=1 

4= 
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with a; in Z, if and only if a —0 (1SiS7). On the other hand let T 

be a birational correspondence between V and V’. Then we may speak of 

the image I’; of T; by T for 117; and we have 

> al’; 
4=1 

for every algebraic differential of degree 2 of the first kind ®’ in V’, if and 

only if Therefore I’;,- - -,I’; are independent trans- 

cendental 2-cycles in V’. Accordingly we must have 7(V) S7(V’), and 

similarly +(V’) =7(V), which completes the proof. 

Appendix II. Algebraic Correspondence and Poincaré Family. 

Let V,“ and V.® be two non-singular projective models with irregularities 

g, and q» respectively, and consider the module of (Vi X V2)-divisors over Z ; 

its member may be called a correspondence between V, and V.. It can be 

readily seen that a correspondence X satisfies X(z,) = X(z2) (mod. G(Vz)), 

for every pair of points z, and z, on V,, if and only if X is of the form 

X=V, x (mod. Gi(Vi x V2)); 

with some V,-divisors («= 1,2). We shall call such an X a correspon- 

dence with valence 0. Since the correspondences with valence 0 form a sub- 

module of the module of all correspondences, we can consider the factor 

module 4(V:,V.). On the other hand since V, are orientable manifolds, 

Z) are free abelian groups with 2q, generators Tg; (1S 1S ; 

and if we put (1 SiS 2qa), where are generic 1- 

sections of V,, then the ya (1 SiS 2q,) form a base of §1(Va,Q) for 

@==1,2. Moreover every 2(d, -+d,—1)-cycle X of V: X V2 over Z can 

be written uniquely in the form 

— V; T, -b V2 2 x T2;) (mod. Z), 

where [, are Z-cycles of 2(d,—1) dimension in Vg (21,2) and where 

S = (si) is a Z-matrix of type (2q1, 2q2). Let wg be the period matrices of 

the Picard integrals of the first kind on Vq along the 1-cycles yqi (1 Si S 2q,) 

and let A, be the abelian varieties attached to these Riemann matrices for 

@==1,2. It can be readily calculated without difficulties by the Lefschetz- 

Hodge theorem that X is algebraic if and only if T, are algebraic and 8 

satisfies the relation w,;S*w,—=0. Therefore if we denote by A(V:, V2) the 

— 
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rank of the Z-module of such matrices S, we have the following formula, 

which is well known if V,; and V4 are curves: 

Xx V2) = p(V:) + p(V2) + V2). 

Now the module #(A,,A.) of all homomorphisms of A, into A, can be 

represented faithfully as the module of ‘‘ complex multiplications” of , to 

w,; and if we extend this module over Q, it is isomorphics with the module 

of all Q-matrices satisfying o,Stw,—0. Moreover if a correspondence X is 

homologous to 0 modulo Z, we can conclude from Theorem 5 that X is of 

valence 0. Therefore the Z-modules @(V;, V) and #(A,, Az) have the same 

rank; since they are both free, however, we get the isomorphism 

B(V:, V2) = As). 

As a free abelian group, #(Ai,A.) depends only on the categories of A, 

and As. 

_ If we apply the above result to the case where V; =A is the Albanese 

variety attached to a given variety V. = V. we see that @(A, V) is generated 

by the Poincaré family in the “general case” #(A,A) =Z; and then, 

up to-a scalar factor, the Z-matrix F in our theory is an absolute invariant 

of V. In this connection it is also to be remarked that there exists a Riemann 

matrix with any preassigned principal matrix; thus the Albanese variety and 

the Picard variety attached to the same variety are not isomorphic in general. 

Kyoto UNIVERSITY, JAPAN. 
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CONTOUR EQUIVALENT PSEUDOHARMONIC FUNCTIONS 

AND PSEUDOCONJUGATES.* 

By James A. JENKINS and Marston Morse. 

1. Introduction. The present paper deals with the structure of the 

level curves of pseudoharmonic functions defined in the closure of Jordan 

domains D and satisfying certain boundary conditions. We are in particular 

interested in formulating necessary and sufficient conditions that two such 

functions U and V be contour equivalent (written C. E.) that is, that there 

exist a sense-preserving homeomorphism (written S. P. homeomorphism) 

¢ of the domain of U onto that of V under which the connected level arcs of 

U are mapped onto the connected level arcs of V. By defining and con- 

structing a pseudoconjugate v of an admissible wu an interior transformation 

u+ iv of D is obtained. It is proved that for a given admissible U a S. P. 

homeomorphism ¢ of D onto itself exists such that the composite function 

Ud is harmonic. The theorems on contour equivalence are new even when 

U and V are both harmonic. 

The set of level curves of a pseudoharmonic function U which emanate 

from the multiple points of U is termed the net of U. We show that each 

admissible U is C. E. to a model U, with a net composed of hyperbolic lines 

(regarding the disc | z| <1 as a hyperbolic plane). 

Reference will frequently be made to the book: Marston Morse, “ Top- 

ological Methods in the Theory of Functions of a Complex Variable,” 

Princeton University Press, which we denote by M. 

When a pseudoharmonic function U is defined over a general simply 

connected open domain a pseudoconjugate of U still exists although radically 

different methods of proof are required. It is even possible to start with 

families of curves which have the topological properties of level arcs but 

which are not given as level arcs of a function U. Contact is thus made with 

some of the results of W. Kaplan‘ although the methods used are quite dis- 

tinct. Results in this open case will be presented later. 

In the bibliography, reference is made to two additional papers, of interest 

in connection with this paper. 

* Received February 12, 1951. 

1'W. Kaplan, “ Topology of level curves of harmonic functions,” Transactions of the 
American Mathematical Society, vol. 63 (1948), pp. 514-522. 
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Part I. Contour Equivalence. 

2. Fundamental definitions. A function U with real values U(z), 

z—=2x-+ iy, is said to be pseudoharmonic at the point z) of the z-plane if 

U(z) is defined in a neighborhood NW of z and if there exists a 8. P. homeo- 

morphism ¢ from a neighborhood N, of z to N, leaving z, fixed, such that 

the composite function Ud is harmonic and non-constant on N;. A critical 

point of U¢ is termed a critical point of U. A function U is said to be 

pseudoharmonic on a domain D (open) if it is pseudoharmonic at each point 

of D. A subset of D on which U(z) is contant will be called a U-set. A 

U-are is thus well-defined. We understand that a U-set but not a U-arc 

may reduce to a point. We shall introduce canonical neighborhoods N of a 

point z)¢ N and canonical representations of U over WN as follows. 

Case I. Let U be pseudoharmonic in a neighborhood of z). There then 

exists a neighborhood N of 2 free from critica! points of U except at most 2, 

with NV the homeomorph of a plane circular disc such that z) corresponds to 

the center of the disc and the locus on which U(z) = U(2)) in N corresponds 

to a set of 2n rays (n > 0) leading from this center and making successive 

sectors of central angle z/n. As a variable point z crosses any one of these 

U-ares (except at z)) the difference U(z) —U(z) changes sign. (See M., 

Th. 2.1.) If n=—1, a single U-are passes through 2 and 2 is termed 

ordinary. If n> 1 2 is termed a multiple point of U of index 2n—2. A 

neighborhood of z) such as N will be termed canonical. 

Let D be a Jordan domain bounded * by a Jordan curve BD. 

Conpitions*® [D]. A real valued function U defined over D will be said 

to be in [D] if U is pseudoharmonic on D, continuous on D, and if U | BD 

assumes its relative extreme values in at most a finite set of points in BD. 

We recall a number of properties of a Ue [D]. Every point ze 8D 

has a canonical neighborhood coming under Case II or Case III. 

Case II. ze BD; 2% not a point of relative extremum of U. Here 2 

has a canonical vicinity N relative to D, free from critical points (cf. M) of +U 

in D, with N the homeomorph of a semi-disc H, such that z) corresponds to 

the center O of H, NM BD corresponds to the diameter of H, while the U-set 

in N at the level c—U (2) is represented by n rays (n >0) emanating 

2 As a general notation, 8D shall mean the boundary of D. 

® Conditions [D] include conditions called Boundary Conditions A in Morse, loc. cit. 
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from O, and dividing N into m—=n-+-1 sectors (open) on which U —c 

alternates in sign. If m > 2, 2 is termed a boundary multiple point of 7 

of index m —1. 

Case III. ze BD; % a point of relative extremum of U. In this case 

there exists a canonical neighborhood N of 2 relative to D free from critical 

points of + U with WN the homeomorph of a semi-dise such that z) corresponds 

to the center of the semi-disc, NM BD corresponds to the diameter of the 

semi-disc, the boundary of N in D is at a level c,c such that for ze N 

and z+4 2%, U(z) is between c, and c. (M., Th. 7.2.) The point 2 is 

termed ordinary in this case. 

U-continuation. As shown in M., § 7, a U e¢ [D] has only a finite number 

of multiple points in B. By a U-continuation of a simple U-are g will be 

meant a simple U-arc containing g which continues through a multiple point 

% of U in D with the U-are which issues from 2) opposite to g in the canonical 

representation of U neighboring Zp. 

Contour EquivaLtence. Let A be a second Jordan domain. Two func- 

tions U and V continwous over D and A respectively, are said to be C. E. 

under , if there exists a 8. P. homeomorphism ¢ of D onto A such that each 

maximal connected U-set (V-set) corresponds to a like V-set (U-set); $ ts 

said to define a strict contour equivalence if U = V9. 

Examples show that not every contour equivalence of pseudoharmonic 

functions is strict. However, we shall prove in §7 that a contour equi- 

valence of a Ue [D] with a Ve [D] implies a strict contour equivalence, if 

one admits a preliminary transformation U’——U (if necessary) and a 

preliminary continuous deformation of U through functions in [D] with 

fixed level arcs. One sees that contour equivalence, as well as strict contour 

equivalence, is symmetric, reflexive, and transitive. 

Type of multiple point. In §4 we shall enlarge the class [D] to the 

class [D]’. Understanding the term multiple point P and canonical neighbor- 

hood N(P) in the enlarged sense of § 4 as well as in the sense of § 2, let P 

and Q be multiple points of U with canonical neighborhoods V(P) and N(Q). 

We term P and Q multiple points of the same type if for some choice of 

N(P) and N(Q), N(P) admits a homeomorphism onto N(Q) which maps 

U-ares onto V-arcs. 

It is readily seen that multiple points of the same type have equal 

indices and both come under the same one of the Cases I, II (or V, VII in 

the enlarged sense). 
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Interior transformations f. A function f with complex values f(z) in 

the w=wu- iv-plane will be said to be interior at 2 if f is defined in a 

neighborhood N of z, and if there exists a S.P. homeomorphism ¢ of a 

neighborhood WN, of z) onto N leaving 2 fixed and such that the composite 

function f¢ is meromorphie and non-constant on N,. We term f interior 

over D if f is interior at each point ze D. If f is interior over D the real 

and imaginary parts of f are pseudoharmonic over D apart from poles of f. 

The following two lemmas will be useful in § 11, § 12. 

LemMA 2.1. Let z bea point in D. If f is interior in D— 2% and 

continuous in D, then f ts interior at Zp. 

Set f(z) For 0 sufficiently small, the set | z—2|Se 

is in D and for some such e the image curve g = f(BE,) does not intersect wo. 

Let e be so chosen. Let m be the order of g with respect to wo. It is seen 

that each point w ~ w, in a sufficiently small neighborhood of wp» is covered 

m times by f |(H-— 2), so that f is open and light. The lemma follows. 

LemMaA 2.2. If f ts interior in D, continuous in D and if f(BD) =g 

is locally simple, then f admits an interior extension over some neighborhood 

of any given point z of BD. 

As seen in M., p. 85 the points z)¢ 8D neighboring which f fails to be 

topological are isolated in BD. Lemma 2. 2 is immediate except at a point 2 

neighboring which f fails to be topological. Suppose then that z is such 2 

point. 

As seen in M., § 23 one can suppose without loss of generality that z, = 0 

and that there is an open arc h of BD of the form [y=—0,—e<2r<e} 

with an image f(h) covering an arc [v—0,a<u< b] in a 1-1 manner. 

We continue f over h by requiring that f(z) —f(z) for points ze D near 

z=0. It is seen that the extended f satisfies the conditions of Lemma 2. 1 

in a sufficiently small neighborhood of z —0 and so is interior at 2. 

3. Conditions necessary for contour equivalence. Contour equivalence 

of Ue [D] with Ve[A] under ¢ implies a 1-1 mapping T of the set of 

multiple points of U onto the set of multiple points of V, sending a multiple 

point of U into a multiple point of V of the same type, and boundary multiple 

points into boundary multiple points in the same cyclic order. If a finite 

1-1 correspondence 7 of this type is given without giving ¢ but satisfying 

certain other finite conditions to be enumerated, there then exists (§6) an 

| 
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extension ¢ of 7 over D such that ¢ defines a contour equivalence of U 

with V. New terms are needed. 

The star S(P,U). Let P be a multiple point of U in D or BD. Let 

each U-are g with end point at P be “continued” (§2) on D (open) 

from P until a point of BD is reached. So continued and sensed g will be 

termed a ray of the star S(P,U) of P. The rays of S(P,U) will be simple 

and non-intersecting except at P. They will divide D into open connected 

sectors 

(3. 1) +, Sm(P, U) (m > 2) 
where m is even when Pe D. We suppose that these sectors are indexed in 

the order in which their boundary arcs on BD follow each other in counter- 

clockwise sense, starting with the first such are of BD following P in case 

Pe BD. For Pe BD, 8,(P, U) will then be uniquely determined. For Pe D, 

S,(P,U) can be taken as any one of the sectors of S(P,U). The boundary 

of S;(P,U) will include an are of BD and one or two rays of S(P,U). We 

term P the center of the star S(P,U). Two stars will be said to be of the 

same type if their centers are of the same type. 

Frames M(U) and mappings T. We shall obtain homeomorphisms ¢ 

defining contour equivalence of pseudoharmonic functions U and V as exten- 

sions over D of mappings 7 of special subsets (§4) M(U)CD. To be 

admissible a frame M(U) shall include all the multiple points of U. A 

mapping T of M(U) CD onto M(V) CA to be admissible must be a homeo- 

morphism which preserves the type of each multiple point and which maps 

M(U)| BD onto M(V)| BA with preservation of sense in case M(U)| BD 

contains at least three points. With this understood we define similarity of 

M(U) with M(V) under T relative to two stars 8(P,U) and 8(Q,V) for 

which Q = TP. 

RELATIVE SIMILARITY UNDER T. Let T be an admissible mapping of 

M(U) onto M(V) with a multiple point P of U going into a multiple 

point Q of V of the same type. We say that [M(U),S(P,U)] is similar to 

[M(V),S(Q, V)] under T if for some admissible indexing of 8(P,U) and 

S(Q,V) and for each point ze M(U) and image we M(V) under T the 

incidence relations 

(3. 2) ze8(P,U), wed, (Q,V) 

both hold or both fail to hold for each 1. 
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UNDER T. Admissible sets M(U)CD and M(V)CA, 

homeomorphic under an admissible mapping T, are termed similar under 

T if for any two multiple points P and Q which are images under T, 

[M(U), S(P,U)] is similar to [M(V),8(Q,V)] under T. 

Stmitarity. Admissible sets M(U)CD and M(V)CA are termed 

similar (written M(U) ~M(V)) tf M(U) and M(V) are similar under 

some admissible T. 

It is clear that the relation of similarity between admissible frames 

M(U) and M(V) is reflexive, symmetric, and transitive. It is thereby not 

excluded that U —V and that M(U) ~ M(U) under some T other than 

the identity. 

The basic conditions for contour equivalence are given in Th. 3.1. 

That these conditions are sufficient will be proved in § 6. 

THEOREM 3.1. In order that Ue [D] and Ve[A] be C.E. under o 

it is necessary and sufficient that the set w(U) of multiple points of U and 

the set w(V) of multiple points of V be similar under some admissible 

mapping T. 

The condition is necessary, since the existence of the mapping ¢ implies 

the existence of the mapping T= ¢|y»(U) of »(U) onto p(V). Moreover, 

T is admissible in that T, like the mapping ¢, preserves the type of the 

multiple point, carries boundary multiple points into boundary multiple 

points and preserves cyclic order of these boundary points. 

In satisfying the condition of similarity of »(U) with »(V) an indexing 

(3.1) of the sectors of S(P,U) must be made and coordinated with an 

indexing of the sectors of S(Q,V) where T7(P) —@Q so that the incidence 

conditions (3.2) both hold or fail to hold. When P and Q are boundary 

points only one indexing is possible. If P and Q are in D and happen to be 

the only multiple points of U and V respectively, Th. 3.1 is vacuous except 

for the condition that P and Q have the same multiplicity; in this case the 

sectors S8,(P,U) and 8:(Q,V) can be chosen arbitrarily from among the 

sectors of S(P,U) and S(Q, V) respectively. 

If U possesses a multiple point P’ different from P, and if V is C. E. 

with U, then V possesses the multiple point T(P’) —=Q’~Q. Given an 

indexing (3.1) of the sectors of S(P,U), an indexing of the sectors of 

S(Q,V) is then uniquely determined by the condition that the sector (or 

two adjacent sectors) of S(P,U) with whose closure (closures) P” is incident, 

bear the same index (indices) as the sector (or two adjacent sectors) of 

S(Q, V) with whose closure (closures) Q’ is incident. 
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4. Conditions [D]’. To establish the sufficient conditions for contour 

equivalence of U and V as given in Th. 3.1 it is convenient to establish a 

similar theorem in which the preceding class [D] is enlarged. In §12 we 

shall show that a Ue[D] admits a pseudoharmonic continuation over an 

open domain D’D D. If a U were constant on some are of BD but otherwise 

satisfied the conditions [D] this pseudoharmonic continuation over BD might 

prove impossible, as examples * would show. This fact motivates the following 

definition. 

Conpitions [D’]. A function U defined and continuous at each point 

of D will be said to be in [D]’, if U is pseudoharmonic over D, if there are 

at most a finite set of maximal connected U-arcs in BD, if U | BD assumes 

its relative extrema in at most a finite set of such U-arcs or points in BD, 

and if U admits a pseudoharmonic continuation over BD. 

Suppose Ue[D]’. If z is in a maximal connected U-are g in BD, a 

canonical neighborhood N of 2 and local representation of U over N will 

not come under Cases I, II, III of §2. The local representations described 

below are a ready consequence of the assumption that U admits a pseudo- 

harmonic continuation over BD. There are four new cases. 

IV. Z interior to g, and a point of relative extremum ® of U. 

V. % interior to g and not a point of relative extremum of U. 

VI. 2 an end point of g, and a point of relative extremum of U. 

VII. 2 an end point of g, and not a point of relative extremum of U. 

In a canonical neighborhood N (relative to D) of a point 2 a sector 

of N shall be understood as any maximal connected subset of N on which 

U(z) AU (2). 

Case IV. A canonical N exists with N the homeomorph of a semi-dise 

H such that 2) corresponds to the center O of H, BN NM BD corresponds to the 

diameter d of H, and maximal U-arcs in N correspond to chords in H 

parallel to d. Cf. Case III, § 2. 

Case V. An WN exists essentially as in Case II except that all arcs 

‘One could construct an example in which a U-arc in D had every point of a U-are 

in BD as limit point. 

5That is, in some neighborhood of 2 relative to D U(z) =U(z), or else 

U(z) =U(z). 
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bounding the sectors of N and emanating from 2 are U-arcs (i.e., including 

the two arcs of BD emanating for z)). 

Case VI. An WN exists homeomorphic with a semi-dise H, such that 2, 

corresponds to the center O of H, and BN M BD corresponds to the diameter d 

of H. Of the two rays pi, p2 of d separated by O, U has its extreme value c 

at each point of one, say p:, and is strictly monotone on the other. An 

arbitrary maximal U-are in N not at the level ¢ corresponds to a quarter 

circle which starts at a point of ps, has O as its center, and is continued by a 

straight are in H parallel to d until BH is reached. 

Case VII. An N exists similar to the N under Type V, except that 

one of the sectors of N (the initial or final sector) has one boundary arc in 

BD, not a U-are. 

Proofs of these statements can be made with complete rigor, using the 

representations in Cases I, II, and III of the pseudoharmonic extension of 

U over BD. 

Theorem 4.1 depends for its meaning on the definition of an admissible 

mapping 7 of § 3, and this in turn depends upon the meaning attached to 

two multiple points being of the same type. The necessary definitions will 

now be given. 

A canonical neighborhood WN of a point ze BD contains just one sector 

in Cases III, IV, and VI, and in each of these cases is termed ordinary. 

Let m be the number of sectors in a canonical neighborhood of 2. In 

Cases V or VII, m>1 and % is termed a boundary multiple point of 

index m— 1. It is seen that a point z of intersection of a U-are in BD 

with any U-are not in BD (except for z)) always comes under Case V or VII, 

and so is always a multiple point of positive index. 

Given Ue [D]’ and Ve [A]’ let P and Q be multiple points of U and 

V respectively. For P and Q to be multiple points of the same type (as 

defined in § 3) it is necessary and sufficient that P and Q come under the 

same one of the Cases I, II, V, or VII and have equal positive indices. 

As in §3 an admissible frame M(U) must contain each multiple point 

of U. Stars S(P,U) are formally defined as in § 3 admitting the new types 

of multiple points P. As previously two stars S(P,U) and S(Q,V) are 

termed of the same type if P and Q are of the same type. Recall that an 

admissible mapping T of a frame M(U) onto a frame M(V) is a homeo- 

morphism mapping the set of multiple points of U onto the set of multiple 

points of V, preserving the type of a multiple point and mapping M(U)| BD 

onto M(V)| BA with preservation of sense on the respective boundaries. 

t 

4 

i 
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The conditions necessary and sufficient for contour equivalence of U and 

V include those of Th. 3.1 and are given as follows. 

THEOREM 4.1. Given Ue [D]’ and Ve[A]’ let M(U)[M(V)] be the 

union of the multiple points of U[V] with U-arcs [V-arcs] in BD, [BA]. 

In order that U and V be C. E. under a 8. P. homeomorphism ¢ tt 1s necessary 

and sufficient that M(U) be similar to M(V) under an admissible mapping T 

of M(U) onto M(V). Given T, ¢ can be taken as an extension of T over D. 

Given T can be taken as M(U).° : 

That the conditions of the theorem are necessary is an immediate 

consequence of the definitions. That the conditions are sufficient will be 

established in the next sections. In the next section certain intuitive notions 

needed in the proofs are made precise. 

5. Local right sets, and sensing of U-arcs. Let g be a sensed Jordan 

are and za an inner point of g. We shall make the intuitive notion of 

the right of g near a more precise. To that end let N be a Jordan region 

containing a whose intersection with g is a subare g’ of g forming a cross 

cut of N. There then exists a 8S. P. homeomorphism H of WN onto the disc 

(|z| <1) such that g’ is mapped onto the positively sensed segment of the 

real axis in the disc. The inverse image in NW of the set (|z| <1,y <0) 

[alternatively | z| <1,y > 0,] will be called a local right [left] set of the 

element (a,g). It is readily shown that for a given element (a,g) local 

right sets and local left sets of sufficiently small diameter have an empty 

intersection, while the intersection of any two right (left) sets includes a 

right (left) set. S.P. homeomorphisms which (by convention) preserve the 

sense of an arc g, carry right (left) sets of an element (a,g) into right 

(left) sets of the image element. 

Let z =a be an ordinary point of a pseudoharmonic function U. There 

exists a S. P. homeomorphism ¢ of a neighborhood of z =a into the w-plane 

(w =w- iv) carrying z =a into w = 0 and U-arcs into curves on which v 

is constant. If g is a properly sensed U-are through z—a, a right set 

(left set) of (a,g) of sufficiently small diameter thus consists of the points z 

in a neighborhood of a such that U(z) < U(a)(U(z) >U(a)). Such a 

sensing of g will be termed U-positive, the opposite sensing U-negative. Such 

a U-positive sensing of a U-are g near an ordinary point z—a in g is 

independent of the mappings and neighborhoods used to define their sensing. 

If U is pseudoharmonic in D it is possible to assign a positive sense to each 

U-arc composed of ordinary points of U such that this assignment agrees 
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with each local assignment of a U-positive sense to a U-arec. At multiple 

points of U, this sensing is ambiguous. 

A particular application of this is as follows. Let a Ue [D]’ assume 

its absolute minimum on an arc p of BD. Then a U-positive sensing of p 

will be counter-clockwise on BD. If however U assumes its absolute maximum 

on an are q of BD, a*U-positive sensing of q will be clockwise. 

6. Sufficient conditions for contour equivalence. We shall prove that 

the conditions of Th. 4.1 are sufficient. Let v(U) be the sum of the indices 

of the multiple points of U, and let v(V) be similarly defined. We shall 

make an induction depending upon the value of v(U) =v(V) recalling that 

v(U) =v(V) when the conditions of Th. 4.1 are satisfied. It is necessary 

to set v(U) =0 if U has no multiple points, similarly for v(V). By con- 

vention let each ordinary point have an index 0. 

Lemma 6.1. The truth of Th. 4.1 for v(U) =v(V) <n, and n>0 

implies its truth for v(U) =v(V) =n. 

Arcs p and q. It is given that the frames M(U) and M(V) appearing 

in Th. 4.1 are similar under a homeomorphism 7. Let P, and Q, be fixed 

multiple points of U and V respectively, corresponding under T. The condi- 

tions for star similarity under T of [M(U), S(Po, U)] and [M(V),S(Qo, V) | 

as defined in § 3 are satisfied (by hypothesis) after a suitable indexing of the 

sectors of S(P,,U) and a corresponding indexing of the sectors of S(Qo, V). 

By virtue of this indexing each ray of S(Po, U) corresponds to a definite ray 

of S(Qo,V). Let p be an arbitrary ray of S(Po,U) in case Poe BD, and 

in case Py e D let p be the U-continuation in both senses to BD of an arbitrary 

ray of S(P,U) with p sensed as the ray. Let q be the corresponding ray of 

S(Qo, V), or its continuation in case Qo A. 

By virtue of the assumed similarity of M(U) and M(V) under T, and 

the choice of p and gq, the multiple points of U in p correspond in a 1-1 

manner under 7 to the multiple points of V in qg with the order in which the 

multiple points on p appear on p as a sensed arc the same as the order in 

which their 7-images appear on q as a sensed arc. One sees this on con- 

sidering incidences with the stars S(P,U) and S(Q,V) where P is an 

arbitrary multiple point on p and T(P) —Qeq. 

A simplifying modification. Without any loss of generality we can 

suppose that D is the dise (|z| 1); for under a 8. P. homeomorphism ¢ 

of this disc onto D, U is C. E. with U¢ (defined over the disc). 
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The proof can accordingly be simplified by supposing that D and A are 

each the disc (|z| <1), that p and q are each the diameter d of this disc 

leading from z——1 to z—-+1, and that the multiple points z* of U 

in d are identical with those of V in d, with T'(z*) = z*. The point z—1, 

if in M(U), is a multiple point of U of Case II, V or VII; likewise the 

point z—-—1. Granting this a priori simplification, we assume as previously 

that M(U) ~ M(V) (under T). 

Let D, be the open upper semi-disc of D: (|z| <1). Set u—U | D,, 

v=V|D,. Let M(u)[M(v)] be the union of the multiple points of u, [v] 

with the u-arcs [v-arcs] in BD,. 

The mapping T,. With wu and ve[D,]’ an admissible mapping 7, 

(see-§ 3) of M(u) CD, onto M(v) CD, is obtained on setting T(z) = T(z) 

for ze M(U) OD, and T,(z) =z for zed. These two conditions on 7; (z) 

both apply to a point z of M(U)/N dz, and are consistent. This is true if 

zed is a multiple point of U, since 7'(z) =z, as arranged in the preceding 

paragraphs. It is true if z—-+1 is in M(U), since this can happen only 

if z—-+1 is a multiple point of U [Cf. Cases V and VII of §4.] The 

mapping 7, of the frame M(wu) onto the frame M(v) is admissible in the 

sense of § 3 in that it maps the set of multiple points of uw onto the set of 

multiple points of v, preserving type, and maps M(w)| BD, onto M(v)| BD, 

preserving sense on BD. 

The indexing of stars S(P,u) and 8(Q,v). If P and Q are multiple 

points of w and v respectively with T,(P) =@Q then P and Q are multiple 

points of U and V with T(P) —Q. The sectors of S(P,u) and S(Q, v) 

will be indexed in such a manner that a sector S;(P,u) has the index « in 

common with a sector S;(Q,v) if and only if the sectors in S(P,U) and 

S(Q,V) containing S;(P,u) and S;(Q,¥v) respectively as point sets, bear 

equal indices k. 

Finally M(u) ~ M(v) under T,. The analysis follows. Each multiple 

point of uw or v respectively is a multiple point of U or V. Among points 

in D,, the converse is true except at most for the points z—-+1. The 

stars of uw [or v] are thus the intersections with D, of stars of U [or V] 

with the same centers. Note that M(u) =[M(u)NM(U)]|]Ud. Hence 

M(u) = [M(u)NM(U)]UA, where A is the set of points ze d not multiple 

points of U. 

The incidence relations. It follows from the definition of 7, and the 

indexing of the sectors of the stars S(P,u) and S(Q,v) that a point 

3 
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z*e¢M(w)QNM(U) has the same incidence relations with closed sectors of 

S(P,u) as T(z*) with the corresponding closed sectors of S(Q,v). These 

points 2* include the multiple points of u in d (in particular possibly 

P,=Q.). These multiple points z* of wu in d are also multiple points of 

U, V and v with T(z*) = T,(2*) 

It remains to consider a point ze A. Since z is not a multiple point 

of U no ray of a star of U or V meets 2 other than a ray on d. The point 

Zo is immediately preceded (or followed) on d by a multiple point z* of U, V. 

If z* is on a sector S;(P,u) with P not in d, or on a left (or right) boundary 

ray of S;(P,u) then z is in 8;(P,u). It follows that z* is in S;(Q,v) or 

on the left (or right) boundary ray of S;(Q,v). Hence 2% is in S;(Q, v). 

Thus z) has the same incidence relations with the closed sectors of S(P, u) 

as with the corresponding closed sectors of S(Q,v). If P—Q is in d with 

z-coordinate a<1 then the subare of d on which a=2=1 is a right 

boundary arc of the first sector both of S(P,w) and S(Q,v) so that any 

point x, on this are has the same incidence relations with the closed sectors 

of S(P,u) as with the closed sectors of S(Q,v). The are —1llSr7Sa is 

similarly treated if a >—1. Thus M(u) ~M(v) under 

The induction. Suppose that v(U) =v(V) =n>0. Let v(u) =v(v) 

=m. The inductive hypothesis of the lemma can be applied to wu and v 

if m<n. That m <n follows from the fact that each multiple point P 

of uw and v is a multiple point of U and V of no less index, while each 

multiple point of U and V on d, in particular Po, has an index relative to u 

and v which is less than its index relative to U and V. Indeed P, may be 

ordinary relative to wand v. By virtue of the inductive hypothesis wu is C. E. 

with v under a mapping ¢ which is an extension over D, of T, over M(u). 

Thus ¢(z) =z for zed, and ¢(z) =T(z) for zeM(U)ND,. Let Dz be 

the semi-disc of D on which y <0 and set w =U! D,, =V|D.. As 

just shown for wu and v, wv’ and wv’ are C. E. under a mapping ¢’ such that 

¢’(z) =z for zed and ¢’(z) = T(z) forzeM(U)ND,. Let a mapping 

of D onto itself be defined by combining the mappings ¢ and ¢’. Then U 

and V are C. E. under 9%, and ®@ is an extension of T. 

This completes the proof of the lemma. 

The inductive proof of Th. 4. 1 will be completed by proving the following. 

This is the case v(U) =v(V) —0. 

LemMa 6.2. Suppose that Ue[D]’ and V in [A]’ have no multiple 

points and that T is a topological mapping of the maximal connected U-arcs 

| 
| 
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in BD onto the maximal connected V-arcs in BA preserving sense on the 

boundaries.© There then exists an extension of T over D under which U 

is C. HE. to V. 

We begin by verifying the following. 

(a). The only maximal connected U-arcs in BD are those on which U 

assumes a proper extremum. 

If h were a maximal U-are in BD on which U was not a proper relative 

extremum there would be some U-are in D which would have an end point 

Peh. Such a point P would be a multiple point of U coming under Cases V 

or VII of § 4, contrary to the assumption that U has no multiple points. 

(8). The extreme values of U reduce to an absolute minimum and 

absolute maximum assumed respectively in just one maximal connected U-set 

p and one maximal connected U-set q, where p and q may be U-ares or points. 

Suppose that there were at least two disjoint maximal connected U-sets 

affording relative minima. Then for a suitable choice of c the set U; on 

which U(z) =e would not be connected. Since the set U, is connected for 

c= max U(z) there exists a superior limit c,) of the values of ¢ for which 

U, is not connected. One proves easily as in M., § 10 that there must be a 

multiple point P at the U-level c.. The lemma follows. 

Reduced p-length [M., §27]. If a and b are constants with a0, 

aU + b is C. E. with U under the identity. No generality is accordingly lost 

in proving the lemma if we assume that the range of values of U and V is 

the interval [0,1]. No maximal level set of U or V will then reduce to a 

point with the possible exception of sets at the level 0 or 1. Each U-are A 

will be referred to its reduced p-length p as parameter. This is the p-length 

of X measured in A’s U-positive sense from X’s initial point on BD, and 

divided by the total p-length of A. On each such A, p varies from 0 to 1 

inclusive. The V-ares will be similarly referred to their reduced p-lengths 

o as parameter. 

To begin the proof proper consider first the case in which -p and gq are 

maximal connected U-ares on which U assumes its absolute minimum and 

maximum respectively, and let T(p) = p’ and T(q) =q’. The arcs p’ and q/’ 

may be maximizing and minimizing respectively rather than minimizing and 

maximizing. No generality in the proof will be lost if we assume that p’ and q’ 

® One gives the boundaries a counter-clockwise sense as a basis of reference. 
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are respectively minimizing and maximizing since a change from V to the 

C. E. — V would bring this about in any case. 

Suppose that the given mapping 7 of p onto p’ has the form o = (p), 

0 = p=1, making the point on p with reduced p-length p correspond under 

T to the point on p’ with reduced p-length o. The senses of increasing 

p-length on p and p’ have been taken as the U-positive and V-positive senses 

on p and p’ and so are counter-clockwise on BD and BA respectively. From 

this and the nature of T as given, it follows that y(p) is increasing. Similarly 

suppose that the given mapping 7’ of q and q’ has the form o—€(p), 

0 = p=1 and verify the essential fact that £(p) is increasing. An admissible 

extension ¢ of 7 mapping D onto A is obtained by making each U-are d- 

at the level c correspond to the V-are 6, at this level c, and making the 

point p on A, correspond to the point o on 6, such that 

(6. 1) o = (1—c)£(p) + 1)- 

Recalling that (p) and »(p) are both increasing it follows from the properties 

of reduced y»-length that ¢ extends 7 as a sense preserving homeomorphism 

and defines a contour equivalence of U with V. One first verifies that T is 

a homeomorphism. That 7 is sense preserving then follows from the fact 

that it is sense preserving in the neighborhood of one point, in particular 

in the neighborhood of a point on p. 

In case p reduces to a point but q does not, let T(q) = q’, and as before 

suppose V assumes its absolute maximum on q’. Then the maximal con- 

nected V-set in which V assumes its absolute minimum must reduce to a 

point which we denote by p’. Now define reduced p-lengths on the level arcs 

and as in the preceding paragraph let the given mapping T of q onto q’ have 

the form o—{(p). Then the mapping o—€(p) (0<c=1) yields the 

extension ¢ of 7 provided we require ¢(p) = p’. 

In case both the minimizing set p and maximizing set q for U reduce 

to points, the maximal connected V-sets p’ and q’ in which V assumes its 

absolute minimum and maximum also reduce to points. Defining reduced 

p-length as before, the mapping o = p for 0 < ¢ < 1 together with ¢(p) =p’, 

¢(q) =q’ provide a mapping ¢ which is a contour equivalence of U with V. 

This completes the proof of Th. 4.1. Th. 4.1 implies Th. 3.1 as a 

special case. 

7. A group of operators. Given Ue[D] let [U] be the class of 

functions in [D] C.E. with U. In this section we shall describe a multi- 

plicative group of operations which generates [U] from U. Certain pre- 

liminary remarks are needed. 

i} uf 

i 
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The sum of two pseudoharmonic functions w and v defined over D is 

not in general pseudoharmonic over D. For example, set z =x + ty and let 

u(z) == 2, v(z) <1). 

The functions uw and v have no critical point on the domain | z| <1 and so 

are pseudoharmonic. However u-+ v has a minimum when z = 0 and so is 

not pseudoharmonic. The functions wu and v in this example are easily seen 

to be C. E. under the identity. Thus the sum of two functions C. HE. under 

the identity need not be pseudoharmonic. There is nevertheless a law in the 

background. 

Suppose that w and v are in [U] and C.E. under ¢. Let g be any 

simple sensed are in D on which w is strictly increasing. Then for each 

choice of such a g, v will be strictly increasing on ¢(g), or else strictly 

decreasing independently of the choice of such a g. This may be verified 

first for arcs g which intersect the set of multiple points of wu in at most an 

end point. For any one such are g’ can be continuously deformed into any 

other such are g” through admissible arcs g. Finally an admissible arc g 

which intersects the set of multiple points is a sequence of a finite set of 

admissible arcs g; each one of which intersects the set of multiple points in 

at most an end point. 

If g is admissible in the above sense and v is strictly increasing on $(9), 

u and v will be termed positively C. E. under ¢, otherwise negatively C. E. 

under ¢. Whether w and v are positively or negatively C. E. under ¢ is thus 

determined by the behavior of v on ¢(g) for one arbitrarily chosen admissible 

arc g. The following are readily verified : 

(a). If wand v in [U] are C. E. under ¢, then either v or else —v ts 

positively C. LE. to u under ¢. 

(8). The sum of we [U] and ve [U], with u and v given as positively 

C. E. under the identity, is again in [U] and positively C. E. to u and to v 

under the identity. 

To generate [U] from U we shall make use of a deformation A of 

elements we [U]. The deformation of u is defined by a 1-parameter family 

of functions in [U] w’ ich for fixed ¢, 0 = ¢ = 1, and fixed ue [U] have values 

A(z,t,u) (ze D). Lor fixed u, A is supposed continuous over the cartesian 

product of the domains of z and ¢. One supposes that wu is given “ initially ” 

in the form u(z) —A(z,0,u). The “terminal” image Aw of wu under A 

has by definition the values (Aw) (z) = A(z,1,u) (ze D). For fixed te [0, 1] 
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and we [U], A(z, t,w) shall define a function in [U], C. E. with under 

the identity. 

With this understood we introduce three operations on elements in [U]. 

(i) A homotopy A, replacing ue [U] by its terminal image Au under A. 

(ii) A reflection R, replacing u by Ru=— u. 

(iii) A value-equivalence ®, replacing u by ud where $ 1s a 8. P. homeo- 

morphism mapping D onto D. 

Each of these operations on wu yields an image C. E. with u. In cases (1) 

and (ii), Ru, and Aw are C.E. with wu under the identity. Each of these 

operations has an inverse. The inverse of R is R. The operation ® deter- 

mined by the mapping ¢ has an inverse ®* determined by ¢*. If A is 

defined by A(z, t,u) as above, the inverse of A is defined by A(z, 1—t#, u) 

forwe[U],zeD,and0=tX1. The operations R, , A generate a group Q. 

The principal theorem can now be stated. 

THEOREM 7.1. Each element we [U] has the form wU where w ts an 

element in the group Q. 

Given we [U], U is C. E. with wu under some mapping ¢. Hence u¢ is 

C. E. with U under the identity. In accordance with («), RoU is positively 

C. E. with ud, where R, = R, or the identity. We set up = &u and introduce 

the deformation 

(7.1) A(z, t, RV) = (1—t) (2) + t(u) (2) tS). 
For 0 <t< 1 the two terms in the right member define positively C. E. 

functions whose sum is in [U] by virtue of (8). As a consequence of (7.1) 

(7. 2) AR,U = ©*AR,U =u 

This establishes the theorem. 

The first relation in (7.2) has the following meaning. 

Corottary. If ue [D] and Ue[D] are C.E. under the identity there 

exists a continwous deformation of u through elements in [U], each C.E. 

with U under the identity, into one of the two elements + U. 

Part II. Pseudoconjugates. 

8. Definition. Let w be pseudoharmonic in D. A pseudoharmonic 

function v such that u-+ w is interior in D will be called pseudoconjugate 
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to uin D. If wu is continuous on D and pseudoharmonic in D, a function v 

continuous in D and pseudoconjugate to u in D will be termed pseudo- 

conjugate to u in D. When v is pseudoconjugate to u in D a point zeD 

is an ordinary or multiple point of w of index n, if and only if it has the 

same character relative to v. We shall simplify the problem of constructing 

pseudoconjugates by noting the following: 

(8). If v is pseudoconjugate to ue [D], and if > is any S. P. homeo- 

morphism of D onto itself, then vd is pseudoconjugate to wd. 

This follows at once from the definition of a pseudoconjugate. 

As a consequence of (8) to construct a pseudoconjugate to Ue [D] 

one can use any domain F such that £ is the topological image ¢(D) of D 

under a S. P. homeomorphism ¢, and replace U by ue [#] where U = ud. 

If then v is constructed pseudoconjugate to u, vd is pseudoconjugate to U. 

(y). Let uand v be pseudoharmonic functions in D such that u 4+- w =f 

maps D topologigcally into the complex w-sphere. Then f is sense-preserving 

and v therefore pseudoconjugate to u if there exists a continuous 1-parameter 

family of topological mappings f'(0 St =1) of D onto the complex w-sphere 

such that f° =f and f* is interior. 

This follows from the primitive definition of a S. P. topological mapping. 

In applying (y) one can take f? as analytic, or if convenient as the identity. 

9. Three special constructions of pseudoconjugates. By virtue of the 

remarks of § 8 the three special constructions of pseudoconjugates now to be 

given have wide application. We refer to the complex plane of z =z + ty. 

I. Let FE, be the square OS tS1,0Sy51. On let u be the 

pseudoharmonic function with the values ax + b,a>0. Leth(y),0SyS1, 

be continuous and strictly increasing. Then a function v with values? 

v(z) =h(y) + 2 1s pseudoconjugate to u. 

Since u-+ ww clearly defines a topological mapping of the z-plane into 

another complex plane the only point of difficulty is in proving that wu + 1 

is sense preserving. In accordance with (y) of $8 this is established by 

deforming h(y) through a continuous 1-parameter family of strictly increasing 

functions into the identity. When v(z) —y-+72,u+w is clearly sense 

preserving and [I follows. 

7 The # is added to make the boundary values of v strictly monotone when y = 0, 

or i. 
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II. Let EF, be the semi-dise: S0,|z| 1 with diameter d on which 

z=. Let u be the pseudoharmonic function with values ax + b,a> 0. 

Let h(y) be continuous and strictly increasing. Then a function v with 

values v(z) =h(y) is a pseudoconjugate of u. 

III. On the disc E;:|2| <1 the function v with values y is pseudo- 

conjugate to the function u with values ax + b, where a > 0. 

The pseudoconjugates v defined in I, II and III lead to more general 

constructions as follows: Let RCD be a Jordan domain such that PR is 

mapped by a S. P. homeomorphism ¢ onto #;, i—1,2,3. Then the func- 

tions U ud and V = v¢ are defined over R and V is a pseudoconjugate 

of U. More definitely we limit R to subregions RP; of D as follows: 

Case I. R, shall be bounded in D by two disjoint ares of BD and by 

two simple disjoint non-intersecting ares p and q, intersecting BD in a finite 

number of points including the end points of p and q. 

Case II. R&R, shall be bounded in D by an arc of BD and by a simple 

are d, in D except for a finite number of points, including d’s end points. 

Case III. R, shall be identical with D. 

By virtue of the constructions I, II and III functions U pseudoharmonic 

on F; for which pseudoconjugates V exist can be characterized together with 

V as follows (brackets indicate alternative) : 

Class I. Suppose that a Ue[R,]’ (See §4) assumes its minimum 

(maximum) and its maximum (minimum) respectively at each point of the 

ares p, q of BR,, is strictly monotone on the two complementary arcs of BR, 

and has no multiple points at any point of R,. A pseudoconjugate V of 

such a U always exists with values which are presecribed on p and strictly 

decreasing * (increasing), which has no multiple points in R, and is strictly 

monotone on BF, except for a minimum (maximum) and maximum (mini- 

mum) at the final points of p and q respectively. 

Class II. Let a Ue[R,.]’ assume its absolute maximum (minimum) at 

each point of the are de BR, assume its absolute minimum (maximum) at a 

point Pe BR., possess no other extreme boundary points and no multiple 

points. A pseudoconjugate V of U then exists without multiple points in Re, 

8 Sense of increase of functions on SR, are with respect to an independent variable 

moving on PR, in a counter-clockwise sense. The ares p and gq are to be sensed counter- 

clockwise on SR, for this purpose. 

ttf 
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with prescribed strictly increasing (decreasing) values in d and strictly 

decreasing (increasing) values in BR, — d. 

Class III. Let Ue[D] have no multiple points and U | BD just two 

extreme points. Then there exists a pseudoconjugate V of U of the same 

character as U such that the extreme points of U and V appear in BD in 

the circular order min U, min V, max U, max V. 

In establishing the existence of the pseudoconjugates V one begins by 

showing that the respective functions U in Classes I, II, III are strictly 

C. E. with + wu in J, II, III, making use of p-lengths along the U-positive 

sensed level arcs (Cf. §§ 5,6) to obtain the appropriate mapping ¢. The 

existence of pseudoconjugates to functions U in Classes I, II, III is all that 

we shall need to establish the existence of a pseudoconjugate to an arbitrary 

ue[D]. 

10. Secteurs and inner boundaries. A pseudoconjugate of an arbitrary 

U e[D] will eventually be constructed out of the special constructions of § 9. 

To that end D must be broken up into special regions .. coming under Cases I, 

II, and III, with U | X in Classes I, II, III respectively. We shall need 

several definitions. 

If g is a sensed are the corresponding unsensed are will be denoted 

by g|. We say that | g| carries g. 

The net |N(U)|. Let 2 be an arbitrary multiple point of U. Let h 

be a U-are issuing from 2 and continued in the ordinary sense until BD 

or another multiple point is reached. Let N(U) be the union of all such 

sensed U-ares. Let | N(U)| be the union of the corresponding unsensed arcs. 

Right or left continuations. An arc h,e N(U) is termed the right (left) 

continuation of an arc h,e N(U) if h, terminates in the initial point P of hz 

and if | h, | and | h.| are the right and left rays respectively (left and right 

rays) as seen from P, bounding a sector in S(P,U). A simple sensed are 

h’(h’””) composed of a sequence of arcs of N(U) is termed the mazimal right 

(left) continuation of each of its subarcs in N(U) if the second of any two 

successive arcs in N(U) and h’(h”) is the right (left) continuation of the 

first, and if h’(h”’) is a proper subare of no arc with this property. These 

maximal right (left) continuations are obviously simple U-arcs with end 

points on BD. 

Inner boundaries. The preceding maximal right (left) continuations 

h’(h”’) if reversed in sense are maximal left (right) continuations. An 
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unsensed arc & identical with | h’ | or | h” | will separate D into two or more 

regions the closure of one and only one of which (termed a secteur K) will 

contain & and no elements of | N(U)| incident with & other than elements 

of |N(U)| Mk. Observe that D—XK is not a secteur. The secteur K is 
bounded by & and a unique are of BD. We term k an inner boundary. It is 

clear that K determines and is determined by its inner boundary k. Two 

inner boundaries either do not intersect or intersect in a point or arc of 

|N(U)|. If’ is a second inner boundary and if kN k’ is in D—K. 

Of the regions into which & separates D, the secteur K determined by 

k is distinguished from the other components of D—k by the following 

property: if A and » are two elementary arcs of kN | N(U)| with a multiple 

point P as common end point, the sector of a canonical neighborhood of P 

bounded by A and » belongs to K. Every element | h,| in | N(U)! belongs 

to just two inner boundaries, carrying the maximal right and left contin- 

uations of 

Let z be a point not in | N(U)|. Of the connected regions into which 

| N(U)| divides D let X be the region containing z. If @X includes an arc 

|hy |e] N(U)|, it is clear that it must include the carrier p of either the 

right or left continuation of h;. The U-are p is the inner boundary of some 

secteur K. Then either XC K or else YNK =0. The case XC K prevails 

for the following reasons. If P is a multiple point of U in p then X inter- 

sects S(P,U) near P in just one sector S’ of S(P,U) and p contains both 

ares of | N(U)| on the boundary of S’ issuing from P. It is characteristic 

of K that, containing both of these ares of | N(U)|, it contains the sector 9’ 

in a neighborhood of p. Thus YC K. 

LemMa 10.1. The net |N(U)! (assumed non-empty) divides D into a 

finite set of connected open regions X containing no multiple points of U. 

Each region X is either, 

(i) the intersection R of two secteurs K and G@ possessing non-inter- 

secting inner boundaries p and q, with R bounded by p, q and two disjoint 

arcs of BD; or 

(ii) secteur K. 

In Case (i), U | R is in Class I of § 9. In Case (ii), U | K is in Class II. 

If X is bounded by p and an arc of BD, then X is a secteur K and 

Case (ii) alone occurs. In this case it is clear that U | K is in Class II of § 9. 

If Case (ii) does not arise, BX contains a second inner boundary gq, 

the inner boundary of some secteur G. As before GD X. Moreover pN q=0; 

id 
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otherwise g would include arcs of | N(U)| in the complement of K, which is 

impossible since ¥C‘\K. We see that BX includes at most a finite set of 

disjoint maximal connected U-arcs. But U |X has no multiple points, so 

that it follows as in §6 (a) and (f) that BX contains just two disjoint 

inner boundaries p and q, and U | X is in Class I of § 9. 

11. The general construction of pseudoconjugates. If U ¢ [D] has no 

multiple points at all, U is in Class III of § 9 (Cf. (8) of § 6), and a pseudo- 

conjugate V of U is imemdiate. We assume therefore that U has at least 

one multiple point. 

It will be convenient to term the region RF arising in Case (i) of 

Lemma 10.1 a secteur band. By means of the net | N(U)|, D has been 

decomposed into a finite number of secteur bands and secteurs on which U 

is in Class I and Class II respectively. To construct pseudoconjugates of U7 

over the closure of any one of these regions XY so as to yield a resultant 

continuous pseudoconjugate V of U one must progressively assign boundary 

values of V (termed V-values) along preferred U-arecs of BX as in the 

constructions of § 9. 

V-values. If 2, is an ordinary point of U on a U-are g and if g is 

sensed U-positively [U-negatively] (see § 5) then a pseudoconjugate V of U 

must decrease [increase] along g near 2, in order that U +14V may be sense 

preserving. 

To construct a function V pseudoconjugate to U we prefer an arbitrary 

one of the secteurs K or secteur bands RF into which D is separated by | V(U)|. 

Case a. In the case of K, continuous strictly monotone values (termed 

V-values) will be arbitrarily assigned along the inner boundary k& of K so 

that these values increase or decrease in the unique sense possible for a pseudo- 

conjugate of U. Recall that U | K is in Class II of §9. (Lemma 10.1.) 

Hence U possesses a pseudoconjugate V over K extending the V-values just 

assigned along k. The resulting V | K is strictly monotone over BD N BK. 

Case b. If the preferred region is a secteur band R we choose one of 

the inner boundaries & in BR and assign V-values along k as in Case a. 

In accordance with Lemma 10.1, U | # is in Class I of § 9. There accordingly 

exists a pseudoconjugate V of U over R extending the V-values assigned 

along k. Along the second inner boundary k’ in BR, V, as constructed over R, 

gives strictly monotone values, increasing or decreasing in the unique manner 

possible for a pseudoconjugate of U | R. 
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Let X be any secteur or secteur band in the decomposition of D by 

| V(U)| such that BX intersects BK, Case a, or BR, Case b, in an are. 

This intersection must be along a single connected are g, since no U-are can 

be closed in D. Let & denote K or RF according as Case a or Case b arose 

in the first construction. Let k Dg be the inner boundary of XY which 

intersects BS. Note that g-4k. Recall that V-values have already been 

constructed on g. V-values will now be assigned continuously on the residual 

are of k so that the V-values are strictly monotone over all of &. A function 

V pseudoharmonic over X can then be constructed as in Case a or Case b 

extending the values given on k. 

In general let = be the closure of the union of the secteurs and secteur 

bands on which V has already been constructed. As in the second stage of 

the process let X represent any secteur or secteur band in the decomposition 

of D such that BX 1 BS is an are g. Let kDg be the inner boundary of X 

which intersects 83. In the general case it is possible that kg. In case 

k =g, V-values have already been constructed along &. In case kg, 

V-values are assigned along & as in the second stage. A function V is then 

constructed over X as in the second stage. This process is continued until 

V is constructed over all of D. 

It may be remarked that the construction of V is such that V | BD is 

strictly monotone over each of the arcs of BD into which BD is separated 

by | V(U)|. 
It remains to prove that f =U + 1V 1s interior over D. 

It is interior by construction at each point ze D not in the net | N(U)|. 

Let z then be in | V(U)|ND but not a multiple point of U. Without loss 

of generality we can suppose that in a sufficiently small neighborhood of 2p, 

U(z) =x-+¢, for this would be true of a composite function Ud where ¢ 

was a suitable 8. P. homeomorphism of a neighborhood of z. As explicitly 

constructed V is continuous and strictly decreasing along each U-are (with 

U-positive sense) sufficiently near z, so that it is clear that f is sense 

preserving and topological in a sufficiently small neighborhood of 2p. 

Suppose finally that z,¢D is a multiple point of U. If e>0 is 

sufficiently small and N, is the neighborhood (|z—2%|<e) of %, f| Ne 

satisfies the conditions of Lemma 2.1 and is accordingly interior at z. The 

following theorem is accordingly proved. 

THEOREM 11.1. Corresponding to an arbitrary Ue[D] there exists a 

pseudoconjugate V ¢ [D] of U pseudoharmonic over D and continuous over D. 

he 
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12. The continuation of interior transformations. To complete our 

results the following theorem is needed: 

THEOREM 12.1. An interior mapping f of a Jordan domain D into 

the w-plane, continuous on D, which send BD into a locally simple curve gq 

[M., p. 62] can be extended to an interior transformation over a Jordan 

domain AD D. 

To establish this theorem a Riemann ribbon & spread over the w-plane 

and bearing a curve g’ which is simple on & and projects into g will be 

constructed. The more precise statement is as follows: 

LemMMA 12.1. Given a locally simple sensed curve g in the w-plane 

there exists an interior mapping Z of the form w=Z(z) of a domain 

(12. 1) (0<a<1) (aa’ = 1) 

of the z-plane into the w-plane which sends the unit circle (|z|—=1) in 

counter-clockwise sense into g, and which is such that for some constant 

e > 0 and for each subdomain of (12.1) for which 6, Sarg 

the mapping Z is topological. 

The Riemann surface of Z-! is the Riemann ribbon to which reference 

was made. 

To prove this lemma let - w_s, W_1, Wo, W1, W2,° be a cyclic sequence 

of points on g with w;— win for some n > 3 and all 1, so chosen that not 

only the subares 9; = [wi, Wis] but also the subarcs 

(12. 2) [ wi, Wi+1, Wise; Wiss | 

of g are simple. Let k; (i =0,+1,+2,---) be a simple Jordan arc in 

the w-plane such that k; intersects the subare [wi, Wi, Win] of g in w; alone, 

where w; is an interior point of k; and where kj = ki,, for all 1. Because of 

the simplicity of the are (12. 2) we may assume that k; intersects neither k;_, 

nor k;,,. There exists a sense-preserving topological mapping 7, of the 

z’-plane into the w-plane which sends the ares [y’ =0,0 2’ =1] into g, 

and the ares =~ 0,—1 Sy’ and = 1,—15 7 S1] into and 

ky, respectively. The mapping 7, parametrizes k, and k,,, in terms of 7’. 

We can suppose 7'o, T.:, successively chosen so that 7, and T;,,, 

give the same parameterization to and so that 7; = Tin for all In 

particular 7',_, can be chosen so as to give the same parameterization to ky = ky, 

as does 7’, since the w-plane is orientable. The condition of simplicity for 

the ares (12.2) has the following consequence. If 6 >0 is sufficiently 
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small, then for 2’ and 2” in the rectangle H:0S2’=1, —bSySb, 

T, (2) =Ty.1(2’) if and only if —1 and if 2” is pure imaginary 

or null. That is for 2 and 2” in H, the mappings T, and T,,; coincide 

only in their mapping of SD onto 

Let now map the strip < 2’ Sy’ S into the w-plane 

with 7 defined by setting 

(12.3) 

Under 7 the map of the 2’-axis is an unending locally simple sensed curve 

whieh reduces to g by virtue of the relation T(z’ +n) =T(a’). Ife, isa 

sufficiently small positive constant and if c is an arbitrary value of 2’ the 

mapping 7 taken over the rectangle 

(12. 4) S83, 

is sense-preserving and topological. For z’ in the domain of definition of 

T set z= exp(27iz’/n) and subject to this relation set Z(z) =T(z2’). The 

resulting mapping Z has the properties affirmed in the lemma. 

Proof of Th. 12.1. It follows from Lemma 2. 2 that f can be extended 

as an interior transformation over the neighborhood of each point z of BD 

neighboring which in D, f fails to be topological. Since there is at most a 

finite set of such points on BD [M., p. 85] one can suppose D replaced by 

a Jordan domain ADD, over whose closure A, f can be extended so as to 

be interior in A, continuous in A and topological in some neighborhood 

(relative to A) of each point of BA. Without loss of generality we can finally 

suppose that f is interior over a unit disc D: (| z| <1), continuous on D and 

locally topological in some neighborhood (relative to D) of each point of BD. 

Such an f maps some neighborhood WN (relative to D) of each point 2 

of BD in a topological manner onto a subset of a neighborhood of the point 

f(z) of g. The points in f(N) are either in g or locally on one side of g. 

Turning to Lemma 12. 1 let 3, be the Riemann surface of Z-1 over the w-plane, 

understanding that Z(z) is defined only over (12.1). Under Z, BD goes 

into a curve g’ on X,q where g’ is simple on &, and projects onto g. If the 

constant 6 > 0 is sufficiently small f maps the domain Fy: [1—b S| z|S1] 

in a topological manner into the closure of one of the two sets, say G,, into 

which , is separated by g’. We suppose b so restricted. 

Understanding that f(z) is a point in G, and not merely a point in the 

w-plane it is clear that Z-*f(z) —®(z) is uniquely defined for ze H, and 

that ® maps £, topologically into the z-plane, thereby mapping the circle 
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(|z| 1) onto itself topologically. We extend & over the reflection E’, of 

E, in the unit circle by setting &(z) = (®(2’))’ where the primes denote 

reflection in the unit circle. Noting that Z®(z) = f(z) for ze Hy, we extend 

f over E’, by requiring this relation to hold over H’,. Since Z is locally 

topological over EH’, f is likewise locally topological over H’, and hence 

interior over HL, U H’y. The proof of Theorem 12.1 is complete. 

13. Existence of a harmonic function contour equivalent to a given 

ue[D]. The present section is devoted to the proof of the following result. 

THEOREM 13.1. If D is a Jordan domain and u a pseudoharmonic 

function in [D] there exists a harmonic function U in [D] such that U 

as strictly C. E. to u. 

In order to apply the results of § 12 we introduce the following lemma. 

Lemma 13.1. If D is a Jordan domain and we[D] there eaists a 

Jordan domain ADD and an extension u* of u with u* e [A] such that u* 

has no multiple points in BA. 

Let ae BD be a multiple point of uw to which, as a limiting point, 

m u-ares tend. Without essential loss of generality suppose that u(a) = 0. 

In the w-plane consider the harmonic function H with values H(w) = Rw™. 

(0 denotes real part.) Let W be the neighborhood of w—0 in which 

|w|<e. Let W be divided into the semi-dise W’:|w|<e,0<argu<a 

and the complement of the latter relative to W. Let D be the semi-disc 

defined by |w| <r, O0<argw<-a (r>e). The function Z | W’ has m 

level arcs tending to w 0 in W’. Moreover H | W’ is strictly C. E. to + u 

over a canonical neighborhood of za in D. This contour equivalence can 

be extended as a S. P. homeomorphism yw of the w-plane onto the z-plane, 

mapping w—0 onto za, D onto D and, BD onto BD and such that 

u(y (w)) =oH(w) (we W’,o— +1), 

provided e is sufficiently small. 

We extend uw as a pseudoharmonic function across BD near z—a by 

setting —=ocH(w) (we W). Now consider a Jordan domain D’ 

obtained from D by a modification of BD on a short are containing z =a in 

its interior. This modification corresponds under y to a change conveniently 

made in the w-plane, recalling that the segment g of the real w-axis from 

w=—e to we is sent by y into an arc of BD containing z=—a. Let 

the are of g from w = — e/2 to w = e/2 be replaced by a circular are y on 
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| w | = e/2, lying in the lower half w-plane apart from its end points. If g’ 

is the open arc thereby replacing g, H | g’ has m—1 extreme points, on y, 

not multiple points of H|W. Through every other point of g’ just one 

level arc of H enters the domain bounded by g and the arc |w| —e, 

0 Sargw=-7. On the arc corresponding to g’ under y in the z-plane there 

is thus no multiple point of u. Making corresponding extensions of wu and 

modifications of the boundary in a neighborhood of every other multiple 

point of uw in BD, we obtain the desired domain A. The extension w* of u 

to A is clearly in [A] and has no multiple point in BA. 

Now let us suppose that wu in Th. 13.1 has been extended to the Jordan 

domain A so as to have these properties. Let v be a pseudoconjugate of u in 

A constructed according to the prescriptions of §§ 9, 11. Then w| BA and 

v | BA have no common extreme point. Indeed, if | N(u)| now denotes the 

net of u as extended to A, the extrema of v | BA occur at most at points of 

| V(w)| in BA, while the extrema of u| 8A occur at most on the open arcs 

into which BA is divided by the points of | V(u)|N BA. Thus f=—u-+ iv 

is interior at the points of A and maps BA on a locally simple curve. 

By Th. 12.1 f can be extended to a domain & containing A (and so D) 

in its interior. The Riemann surface which is the image of = under f can 

be mapped conformally, say by a function F’, into the finite z-plane. Corre- 

sponding to D under /f we obtain a Jordan region H. Next EF can be mapped 

conformally, say by a function G, onto D, and by a well-known result the 

mapping can be extended to a homeomorphism between # and D. The com- 

pound mapping GFf is thus a 8. P. homeomorphism ¢ of D onto itself such 

that f¢ is a regular function on D. Thus the function U = ud is har- 

monic on D, continuous on D and clearly strictly C. E. to wu. 

It should be remarked that the proof in the last paragraph could also 

be carried out by first extending f to a domain containing A as in the first 

paragraph of the proof of Th. 12.1 so as to eliminate partial branch elements 

[M., pp. 83, 85], and then using the above conformal mapping theorem for 

closed Jordan domains in a neighborhood of each boundary point relative to 

the closed domain. In this way one would not require the full force of 

Th. 12.1. 

14. Model functions U and nets |N(U)|. Suppose that D is the 

domain (|z| <1). Recall that the net | N(U)| of U is defined in § 10. 

We seek a topological model for the net of U under S. P. homeomorphisms 

T(D) of D onto D. Recall that the domain D may be regarded as a hyper- 
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bolic plane with circles orthogonal to (| z|— 1) as its straight lines. The 

closure in D of any such are will be called an H-line. 

THEOREM 14.1. There exists a topological model in D for the net 

|N(U)| of Ue [D] which is the union of a finite set of H-lines in D. 

Let g be the continuation in D in the sense of § 2 of any one of the 

elements he N(U). We term | g| a complete arc in | N(U)|. Two points 

of D will be said to be cofinite if both are in D or both in BD. 

Set No =| N(U)|. By a verter of Ny is meant a multiple point of U 

or a point of N, in BD. By an element of No is meant any arc of N, whose 

end points are vertices of N, but which carries no other vertices of Np. 

Given two vertices P,, Ps of No let No(P,, Ps) =o if P,, Ps are not connected 

on Ny. If P, and P, are connected on N, let No(P;, Ps) be the minimum 

number of elements of NV which is necessary to traverse to pass from P, to P3. 

It is clear that N,(P,, Ps) =No(Ps, P,). We term No(P;, Ps) the No-dis- 

tance from FP, to P;. 

We suppose that the vertices of Ny 

have been ordered as follows. Choose P,; arbitrarily among vertices of Np. 

Choose next the vertices P;(t > 1) for which N,(P;, P;) is finite taking these 

vertices in the order of magnitude of N,(P;, P;), and arbitrarily when the 

N.-distances from P, are equal. Suppose that P;, -,P, have been so 

ordered and that this set includes every vertex connected on Ny, to any 

member of the set. Choose P,,; arbitrarily among the remaining vertices of 

N, (if there are any). Follow P,,, by the vertices P;(j > r-+1) which are 

connected to P,,, on No, taking these vertices in the order of magnitude of 

the numbers No(P;.:,P;) or arbitrarily if the N -distances from P,,, are 

equal. This process will suffice to order the vertices of No. 

There exists a S. P. homeomorphism 7, of D onto D with T,(P,) =P, 

under which each complete arc in Ny, meeting P, has an image which is an 

H-line. This is readily established on using the Jordan separation and 

Schoenflies mapping theorems. 

Proceeding inductively suppose that for 0 << r<_n there exists a S. P. 

homeomorphism 7’ of D onto D such that the image net T(N,.) = WN and 

the image vertices T(P;) = Qi, 1—=1,---,mn, have the property that each 

complete arc h of N meeting the set 

(14. 1) 

4 
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is an H-line. This has been established for r—1. Two cases are to be 

distinguished. 

Case I. Q,; is connected to Q, on N. 

Case II. Not Case I. 

Case I. In this case some point Q;, 7 =r, and Q,,, determine an H-line 

bof N. There exists a point Q on b cofinite with Q,.,, with Qj, Qri, Q in the 

order written on 6, and with Q so near BD that there are H-lines meeting Q 

which do not meet the H-lines h of N except b. (If Q,., is in BD we take 

Q =Qr1.) There will then exist a homeomorphism 7? of D onto D for which 

T*(Q:) T*(Q,) = Q, and under which the H-lines of N meeting 

the set (14.1) are arc-wise invariant, while the image under J+ of each com- 

plete arc of N meeting Q,., is an H-line meeting Q. The above inductive 

hypothesis made on the sets (14.0), (14.1) and 7, is now seen to be satisfied 

by the sets Pi,- --,Pn, Q, and in particular (P,,1) 

(Qrs1) = Q. 

Case II. Let N* be the subset of complete arcs of N meeting the set 

(14.1). The point Q,,, lies in a secteur or secteur band R of N*. One 

replaces each complete arc of N meeting Q,.,1 by an H-line through Q,.:1. 

Then the inductive hypothesis holds for suitable T and r replaced by r+ 1. 

The theorem follows by induction. 

We turn to an inverse problem: What are the characteristics of a set 

of H-lines in D that it may serve as the net of some Ue[D]? The answer 

is in terms of the following definition. 

DEFINITION. We admit any finite set N* of H-lines in D each of which 

intersects at least one other H-line and which does not include the entire 

boundary of any domain in D. 

According to Theorem 14.1 there exists a topological model of the net 

|N(U)| of a Ue[D] which is a set N* of H-lines as admitted above. 

Conversely we have the theorem 

THEOREM 14.2. Corresponding to any admissible set N* of H-lines 

there exists a Ue [D] for which N* =| N(U)|. 

It is clear that N* separates D into a finite number of secteurs or secteur 

bands R. The proof of the existence of a Ue [D] for which N* — | N(U)| 

is similar to the proof of the existence of a pseudoconjugate V e [D] as given 

in $11. One adds the regions R successively so as to always keep a simply 

i 
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connected domain. After the first step, U is given by the previous construc- 

tion of U as constant on a single are of BRM N*. In the case of a secteur 

R, U is first extended as a constant ¢ over all of BRM N* and then extended 

over R with U <c or >c according as U >c or <c on the secteurs or 

secteur bands with which BR has arcs in common. No inconsistency can 

appear as a consequence of this demand at a vertex of V* in BD nor at any 

interior vertex P, since there is always an even number of ares of V* incident 

with P. In the case of the adjoining of a secteur band F# the value c on one 

boundary are of R in N* is determined by the previous construction of U. 

The value c’ on the other boundary are of R& in N* is arbitrary subject to 

one of the conditions c’ < ¢, or c’ > c uniquely determined by the previous 

construction. 

The theorem follows. 

The preceding suggests a weaker form of Th. 4. 1. 

THEOREM 14.3. A necessary and sufficient condition that u, and us in 

[D] with nets N, and Nz respectively be contour equivalent under some S. P. 

homeomorphism of D onto D is that there exist a S. P. homeomorphism t 

of D onto D under which t(Ni) = If exists one can take If 

t exists one can take as an extension of t | N;. 

If ¢ exists then t = ¢ satisfies the condition of the theorem. If ¢ exists 

it is clear that in Th. 4.1, M(u,) is similar to M(u.) under ¢| N, and in 

accordance with Th. 4.1 one can take ¢ as an extension of ¢| Nj. 
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THE ORTHOGONAL GROUP IN HILBERT SPACE.* 

By Catvin R. Putnam and AUREL WINTNER. 

1. Let 9 denote the real Hilbert space (in its realization in terms of 

vectors xz == {z;,} the components of which are real numbers 2; satisfying 

| 2 | = (2,?)4< 0). If A is a real, bounded matrix or, equivalently, a 

linear (distributive and continuous) operator transforming every point, 2, 

of ® into a point, Az, of KR, let | A | denote the least upper bound of the 

vector length | Ax | when varies over the unit sphere, | —1, of 
If an infinite matrix is real and unitary (hence bounded), it will be 

called an orthogonal matrix, O. Let © denote the metric space in which 

the points are the orthogonal matrices, O, and on which the distance is 

defined to be | 0; — O.| (with the above meaning of | A! for the difference, 

A, of two orthogonal matrices). Since |0|—1 holds for every O, no 

distance | 0, — O, | in © can exceed 2. 
In particular, if J denotes the unit matrix, then 

(1) 

holds for every orthogonal matrix. Let a point, O, of Q be said to lie on the 

“boundary,” [Q], or in the “ interior,” 2 — [Q], of © according as the sign 

of equality does or does not take place in (1); so that 

(2) [fo]: |O—I|=2; ie, O—[Q]: |O—I| <2. 

2. Let Q,) denote the set of those matrices which are representable in 

the form eS(—= 1+ 8+ 48?+-- -), where S is some bounded, real, skew- 

symmetric matrix. It is easily verified that, for every such S, the matrix e% 

is orthogonal, but the converse is not true (cf. (I) below); so that Q) is a 

proper subset of ©. A point, O, of Q will be called a rotation or a reflection 

according as it is in Q) or in its complement, Q—Q,). This nomenclature is 

suggested by the circumstance that a finite real, orthogonal matrix is well- 

known to be of positive or of negative determinant (—-+ 1) according as it 

is or is not representable as the exponential of a real, skew-symmetric matrix. 

While no determinants are available for the matrices of Q, it is clear 

from the above definition of 2, that, if O is any orthogonal matrix, 

(3) ORO is a rotation if R is, 

* Received April 13, 1951. 
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and that 

(4) f+ is a rotation if Ff is. 

On the other hand, it will be seen in § 11 and § 13 that, in contrast to what 

holds for finite matrices, 

(5) R,R, can be a reflection if R,, R, are rotations, 

and that 

(6) R,R, can be a reflection if R,, R, are reflections. 

It should be noted that (6) is not implied by (5), nor (5) by (6). On the 

other hand, since the orthogonal matrices form a group, (3) is equivalent 

to the statement that 

(7) ORO is a reflection if FR is, 

and (4) to the statement that 

(8) R- is a reflection if FR is. 

It follows that either all or none of the k! products of & orthogonal 

matrices R,,- - -,R, are rotations. Clearly, it is sufficient to prove this for 

k = 2, i. e., to show that if R,R, is a rotation, then RR, is. But this follows 

by applying (3) to R= O= 

The following fact may also be mentioned: 

(*) Neither Q, nor Q—Q, is an open set (hence neither of them is a 

closed set) on ©. 

It is understood that these and all the subsequent topological notions 

refer to the topology determined by the | 0, — O, |-metric on Q. 

3. In the case of finite matrices, the set of al! orthogonal matrices 

breaks into two closed manifolds (those of determinant -+ 1 and — 1, respec- 

tively), which have no point in common. In contrast, it will follow from (1) 

and (II) below that Q, and Q —Q, contain points which are in the closures 

of the respective complementary sets, Q —Q) and Q). Actually (I) and (II) 

together will supply a characterization of all these points O of “ confluence ” 

(of either kind). 

4. The preceding assertions concerning the “ confluence’ of 2) and 

Q — Q, neither contain nor are contained in the following fact, proved in [2]: 

(9) Q is arcwise connected. 
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In the case of finite orthogonal matrices, the rotations are known to form 

a connected manifold, and the same is true of the reflections. For the case of 

infinite matrices, it was shown in [2] that 

(10) Q, is arewise connected, 

and it will be proved in § 29 that 

(11) Q —Q, is arcwise connected. 

If ¢ is a real number, then ¢§ is a real, bounded, skew-symmetric matrix 

whenever S is. Hence (10) is obvious; cf. [2]. In fact, if R is a rotation, 

say R = eS, then R(t) = eS, where 0 = ¢=1, represents a continuous path 

contained in 2). But this path begins (¢ —0) at J and ends (¢ —1) at the 

given R. 

5. Results corresponding to (9)-(11) will be proved for the “ boundary ” 

and for the “ interior ” of Q, as defined by (2): 

(12) [Q] is arewise connected 

and 

(13) Q — [Q] is arewise connected. 

It will also be shown that, from the point of view of the arewise connectivity 

of the boundary, [Q], with the “center,” J, of Q, there are on [Q] two types 

of points: 

(A) There exist on [Q] points O corresponding to which it is possible 

to find continuous paths Q(t), 0 = ¢=1, connecting O Q(1) to Q(0) 

in such a way that the given O is the only point of the path which is not 

in [Q]. 

(B) There exist on [Q] points O which cannot be connected to J in 

the way specified under (A). 

It should be noted that (A) is not implied by (138). 

6. It will be easy to show that the “interior ” of Q contains none of 

the reflections and not all of the rotations, i. e., that 

(14) [9]. 

The set of the rotations on the “ boundary,” i.e., the intersection, [Q]Q, of 

[Q] and Q), has quite an involved structure on [Q]. In fact, it turns out 

that, while 

(15) [Q2]Q, is arewise connected, 

it is not dense on [Q] (or on Q,), and it is neither open nor closed on [Q]. 
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In case of a finite dimension number, all rotations form an invariant 

subgroup (of index 2) of all orthogonal transformations, and so any fixed 

co-set supplies a topological mapping of the space of all rotations on that of 

all reflections. In view of (5) or (6), this argument cannot be applied in 

the present case. But it will remain undecided whether Qo, nevertheless, is 

topologically equivalent to Q2—Qp,. If it should be, then the “dual” results 

are mere corollaries; for instance, (11) then is equivalent to (10) and, 

therefore, trivial. It would, of course, be sufficient (but not necessary) to 

assure the existence of some reflection, say Ry, having the property that R,.O 

is a reflection or a rotation according as O is a rotation or a reflection. 

The Spectral Characterization of Rotations and Reflections. 

7. The proofs will depend on the spectral resolution of unitary matrices 

[3], pp. 268-277, applied in [1] to the real subgroup of the unitary group. 

The purpose of this chapter is a spectral characterization of the rotations 

(hence, of the reflections as well). In view of (3) (or of (7)), it will always 

be allowed to assume that the orthogonal matrix to be considered is given in 

any of its normal forms which can be attained by orthogonal transformations. 

In particular, it can be assumed that the contribution of the continuous 

spectrum (if any) has been split off by an orthogonal transformation. After 

such a transformation, every orthogonal matrix appears in exactly one of 

the forms. 

(16) O=C; 

where C and P,, denote infinite orthogonal matrices having no point spectra 

and no continuous spectra, respectively, while if n <<, then P, denotes a 

finite, n-rowed orthogonal matrix. It is understood that, whether n << or 

nm =oco in the third of the cases (16), the symbol + means this: « = 0 is the 

only common point of those two linear subspaces of the x-space 9 on which 

C and P,, operate. 

If ¢ is any (real) angle, let B — B(¢) denote the binary matrix repre- 

senting rotation by ¢ in a plane. Thus B(0) is the two-rowed unit matrix, 

and B(a) the negative of it. Hence, if the multiplicity with which —1 

occurs in the spectrum of P, is either finite and even (possibly 0) or infinite, 

then P, is orthogonally equivalent to a matrix which, when denoted simply 

by Pn, is of the form 

(17) Pn—Qn or Pa =1+ Qn, where Qn = + 

(nS), 

| 
3 

| 
4 

| 4 
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and (17) must be replaced by 

(18) P,—R, or Pp» =1-+ Ry, where R, =—1+B(¢:) + °°, 

(nS), 

if —1 occurs in the spectrum of P, with a multiplicity which is finite and 

odd (the angles ¢,, need not be distinct). It is understood that 1 and —1 

in (17)-(18) represent the one-rowed unit matrix and its negative; that, 

whether n <o or noo, the number of the B-terms is $n or $(n—1) in 

(17) according as n is even or odd, and is $(nm—1) or $(m—2) in (18) 

according as n is odd or even; finally, that the alternative cases are needed 

in (17) as well as in (18) in order to take care of matrices Pn», where n S00, 

in which the multiplicity with which +- 1 occurs in the spectrum is not or is 

finite and odd. 

8. It follows from (IV) in § 28 below that, if R is an orthogonal 

matrix not containing —1 in its point spectrum, and if H(A), where 

0 =A SZ 2z, denotes the spectral matrix of — FR, then the matrix 

27 

(19) R; dB where OS 
0 

is orthogonal and satisfies the functional equation R,R, = Ry,» Since (19) 

also implies that — R, it follows that RyR,;—R. Accordingly, 

if —1 does not occur in the point spectrum of an orthogonal matrix, R, 

then Ff is the square of some orthogonal matrix, R. 

9. This fact will be combined with the following 

Lemma. A matrix is a rotation if and only if it is the square of some 

orthogonal matriz. 

Since eS is the square of e*, only the first of the two assertions of this 

Lemma needs a proof. But M. H. Martin has proved ([1], p. 590) that 

every orthogonal matrix, O, can be factored (not in a unique way) as follows: 

(20) O =Te, where TS = ST and T? =I. 

Here 7 is the unit matrix, and 7’, S are two real, bounded matrices the first 

of which is symmetric while the second is skew-symmetric. Since (20) 

implies that O? = eS, and since 2S is skew-symmetric, it follows that every 

O? is a rotation. 

t 
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10. It will now be easy to prove the main theorem on rotations: 

(1) An orthogonal matriz is a rotation if and only tf the multiplicity 

with which —1 occurs in tts point spectrum is either finite and even (possibly 

0) or o. 

First, let O be a rotation and suppose, if possible, that —-1 occurs in 

its point spectrum with a finite, odd multiplicity. After an orthogonal 

transformation, it can be assumed that O is given in the form 

— 0 

o—( 0 
where is the (24 1)-rowed unit matrix and F does not contain —1 

in its point spectrum. Since O is a rotation, there exists a real, bounded 

skew-symmetric matrix S such that 

A B 
= S = 

where the prime denotes the operation of transposition and A is a (2h + 1)- 

rowed square matrix. It follows from Se5 = eS§ that RB’ —=— B’. Hence 

B’ =0, and so 

eA 0 

The last three formula lines imply that e4 = —/?"*, But this contains a 

contradiction, since det e4 >0 but det —J?"*1< 0. This proves the second 

assertion of (I). 

In view of (16) and of the above Lemma, the proof of (I) will be 

complete if it is shown that every matrix C is the square of some orthogonal 

matrix, and that the same is true of every matrix (17). But every binary 

rotation, B(¢), is the square of such a rotation, B(4¢), while the one-rowed 

rotation matrix 1 is its own square. Consequently, it is sufficient to show 

that every C is the square of an orthogonal matrix. But C denotes an 

orthogonal matrix having a continuous spectrum only, hence —1 is surely 

not in the point spectrum of C, i.e., R —C is of the type considered in § 8 

before the Lemma and is therefore the square of the corresponding Rj. 

11. It was shown in [2] that every reflection is the product of three 

rotations, and the question was raised whether two rotations would not always 

suffice. It will now be shown that (1) implies that the answer to this question 

is affirmative, and can even be refined as follows: 

13 
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(t) very reflection can be represented as the product of two rotations ; 

in addition, the latter can be chosen so as to be commutable. 

The assertion of this corollary, (+), of (1) is invariant under an arbitrary 

orthogonal transformation of a given reflection. It can therefore be assumed 

that if the latter is denoted by O and if k, where 0k oo, denotes the 

multiplicity with which 1 occurs in the point spectrum of O, then O = I* ris 

where J* denotes the k-rowed unit matrix, 1 is not in the point spectrum of FR, 

and either of the terms J*, R may be absent. In the proof of (+), two cases 

have to be distinguished, according as k << or k =o. 

If k<o, then FP is infinite, and so the assertion of (+) follows by 

writing O—I* +R as the product of the two matrices J* + (—R), 

ye + (—I®). In fact, (1) shows that both of these matrices are rotations, 

since, by assumption, — 1 occurs with the multiplicity 0 in the point spectrum 

of J*+ (—R), and with the multiplicity o in the point spectrum of 

J* 4+. (—I®). In the remaining case, where k =o, it is sufficient to write 

O as the product of — O and — 1®, since —1 occurs in the point spectra of 

the latter two matrices with the multiplicity oo. This proves (ft). 

Clearly, (+) and (10) imply (9). It is also clear that (5) follows from 

(+), and therefore from (1). 

In contrast, (6) will depend on (II) below. It will remain undecided 

whether, corresponding to the refinement (+) of (5), it is possible to refine 

(6) to the statement that every reflection is the product of two reflections. 

The Closures of the Rotations and of the Reflections. 

12. For the sake of brevity, let an orthogonal matrix, O, be said to 

have a pure vicinity (in Q) if there exists a positive 8B = 8(O) having the 

following property: Either every orthogonal matrix, Q, satisfying |Q —O| < B 

is a rotation or every such Q is a reflection (according as O itself is a rotation 

or a reflection, | Q@Q—0O| < B being satisfied by QO). Every orthogonal 

matrix is of one of two possible types, in accordance with the following 

theorem : 

(II) An orthogonal matrix, O, has a pure vicinity (in Q) or ts a 

cluster point both of rotations and reflections according as —1 is not or 

is in the essential spectrum of O. 

CorottaRy. An orthogonal matrix, O, has a pure vicimty (in Q) if 

and only if —1 is not in the essential spectrum of O. 
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Here and in the sequel, the essential spectrum of an orthogonal matrix,* 

O, is meant to be the set of those A-values which are either cluster points of 

the spectrum of O or are in the point spectrum of O with an infinite multi- 

plicity (or both). For instance, A= 1 is in the essential spectrum of [. 

Since the continuous spectrum of every O is a perfect set (unless it is 

vacuous), a A-value can belong to the essential spectrum for any one, for 

any two, or for all three, of the following reasons: A is in the continuous 

spectrum; A is a cluster point of the point spectrum; d is an eigenvalue of 

infinite multiplicity. Since O is an infinite matrix, its essential spectrum 

always contains at least one point. Needless to say, the essential spectrum 

is a subset of the spectrum (in fact, the latter is a closed set). The notions 

of the point spectrum, the continuous spectrum, etc. are meant, of course, 

in terms of the spectral theory of unitary matrices ([3], pp. 268-277). 

13. Theorem (II), the proof of which will be lengthy, supplies a short 

proof of (6). To this end, let D denote a diagonal matrix which differs 

from the infinite unit matrix J only in that a single diagonal element of I 

is changed to —1. Thus —D is a rotation containing —1 in its essential 

spectrum. It follows therefore from (II) that there exists a sequence of 

reflections L,, - - such that D as (the convergence refers 

to the metric of ©). Similarly, since the negative, —J, of the unit matrix is, 

by (1), a rotation, and since — 1 is in its essential spectrum, it follows from 

(II) that there exists a sequence of reflections K,, Ko,--- such that K,, > — I. 

Consequently L,Km tends to — D times —I, i.e., LmKm— D. But (1) and 

the definition of D show that D is a reflection not containing —1 in its 

essential spectrum. It follows therefore from (II) that LmKm— D is possible 

only if LmKm is a reflection from a certain m onward, say for every m = j. 

Hence, a pair of orthogonal matrices satisfying (6) follows by choosing 

R, = L;, = Kj. 

As another application of (1) and (II), the assertions of (*) at the end 

of § 2 will now be proved. First, it is clear from (I) that there exist both 

rotations and reflections for which —1 is in the essential spectrum. It 

follows therefore from (II) that neither the set of all rotations nor that of 

all reflections is an open or a closed set. 

*In the Hermitian case, the idea and certain fundamental applications of essential 

spectrum are due to H. Weyl, Rend. Palermo, vol. 27 (1909), pp. 373-392, and Mathe- 
matische Annalen, vol. 68 (1910), p. 251. 
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14. There will now be collected the tools needed from spectral theory. 

If H is any bounded, Hermitian matrix, then e‘” is unitary. Conversely, 

it was shown in [3], pp. 268-277, that every unitary matrix is representable 

in the form e*#”, even if the spectrum of H is restricted to the interval 

0 =A S 2z, and even if A = 2z is restricted to be not in the point spectrum 

of H; furthermore, there belongs to every unitary matrix essentially one H 

subject to these restrictions. Thus if #(A) denotes the spectral matrix of H, 

then 

(21a) E(A—0) = F(A), 

and 

(21b) E(A) =| 0 | ifAS0, and = 1 if A= 

In his thesis, M. H. Martin has specified those F(A)’s which satisfy 

(21a)-(21b) and have the property that, if H is the Hermitian matrix having 

the spectral matrix E(A), then the unitary matrix e*” is real, i. e., orthogonal. 

The result of his reality discussion ([1], pp. 598-600) is as follows: e‘” is 

orthogonal if and only if 

(22a) E(+ 0) 0), (#(0) = 

and there exists a real constant a having the property that 

(22b) E(A) + =al for0 <A < 

holds at those interior points A at which £(A) + H(2r—A) is continuous. 

The bars in (22a)-(22b) denote complex conjugation, i.e., ordinary trans- 

position, of the Hermitian matrix £. 

15. This machinery will not be needed in the proof of the first assertion 

of (II), which proceeds as follows: 

Suppose that O is an orthogonal matrix not containing —1 in its essen- 

tial spectrum, and let k, where 0 =k <o, be the multiplicity with which 

—1 is in the point spectrum (k =o is impossible, since —1 is not in the 

essential spectrum). It will be shown that if Q is any orthogonal matrix 

for which |Q@—O| is smaller than a certain positive number 8 = B(0), 

and if 7 =1(Q) denotes the multiplicity with which — 1 occurs in the point 

spectrum of Q, then 1 <oo and J=k (mod2). In view of (1), this will 

prove the first assertion of (II) (and even more, since J is claimed to be finite). 

Let 21,- - +, denote a set of linearly independent eigenvectors of O 

belonging to —1, so that Oz,—— 2, (this z-set is vacuous if k—0). 



THE ORTHOGONAL GROUP IN HILBERT SPACE. 61 

Since —1 is not in the essential spectrum of O, it is clear that |(O + )z | 

has a positive lower bound when z varies over those unit vectors which are 

orthogonal to the space spanned by these eigenvectors. Let such a positive 

lower bound be denoted by 28. It will be shown that the B —£8(O) thus 

defined has the desired property. 

In order to see this, let Q@ be any orthogonal matrix satisfying 

|Q@—0O|<£. Then —1 is not in the essential spectrum of Q and at most 
k eigenvalues? of Q are in the aA-circle |A+1 
contrary. Then there exists a unit vector, z, which satisfies the inequality 

\(Q+])«|=B8 and is orthogonal to the space spanned by the & eigen- 

vectors, of O considered above. But |(O—Q)z|< since 

|z|—1and|O—Q| <8. It follows therefore from |(Q + that 

|(O+1)x| < 28. This contradicts, however, the definition of 28 as a lower 

bound. 

If the rdles of O, Q are interchanged in the preceding proof, what follows 

is that Q has at least k eigenvalues in the A-circle | A ++ 1|<£. Consequently, 

Q has exactly k eigenvalues (and no essential spectrum) in this circle. But 

if X is a complex eigenvalue of Q, then, since Q is orthogonal (hence real), 

the complex conjugate of A is an eigenvalue of the same multiplicity as X. 

Since the circle |A+1|]8 is bisected by the real axis and since the 

spectrum of Q is on the circle | A | = 1, it follows that A = — 1 occurs in the 

point spectrum of Q with a multiplicity, say 1(= 0), for which the difference 

k —1 must become even. As explained above, this proves the first of the two 

=. For suppose the 

assertions of (II). 

16. In order to prove the remaining assertion of (II), suppose that —1 

is in the essential spectrum of an orthogonal matrix O. The assertion to be 

proved is that both rotations and reflections must then cluster at the point 

O of Q. 

Since this assertion remains unaltered if O is replaced by a matrix 

orthogonally equivalent to O, it can be assumed that O is in one of its three 

normal forms (16), with (17)-(18). But —1 then is in the essential 

spectrum of O either because it is in the spectrum of C or because —1 is 

either a cluster point or a point of infinite multiplicity in the point spectrum 

of P (the latter P can belong either to the second or to the third of the 

three cases in (16)). 

? By eigenvalues are meant points in the point spectrum and, when estimating 

their number, they are meant to be enumerated so as to take into account their 

multiplicities. 
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An orthogonal matrix will be said to be of type (*) if —1 occurs in its 

point spectrum with a finite (possibly zero) multiplicity. Let 0, and O, 

be of type (*); then so also is 0; + 02, and (I) implies the following fact: 

If O, isa rotation (reflection), then the orthogonal matrix O, 4 O. is a 

rotation (reflection) if and only if O, is a rotation. Hence it is easy to see 

from (16) and (17)-(18) that it is sufficient to show that O is a cluster 

point both of rotations and of reflections, of type (*), in the following three 

particular cases: 

(i) O has no point spectrum and — 1 is in the (continuous) spectrum. 

(ii) O has no continuous spectrum and —1 is a cluster point of the 

(point) spectrum but is not in the point spectrum. 

(iii) ie, 

(Moreover, it is seen that a portion of the assertion of (II) can be improved 

as follows: If —1 is in the essential spectrum of an orthogonal matrix O, 

then O is a cluster point both of rotations and reflections of type (*).) 

Case (ili) is straightforward. In fact, if 0 < «<7, and if B(¢) denotes 

again the binary rotation by the angle ¢, then it is seen from (1) that 

P. = B(x —¢/1) + + B(a—e/8) - 
is a rotation, and that —1 + P, is a reflection. On the other hand, since 

1/1? + 1/27-+---<o, and since — B(x) is the binary unit matrix, it is 

clear that both the rotation P, and the reflection —1 4 P, are of type (*) 

and tend, as «> 0, to —J, which is the O of case (iii). 

Case (ii) can be disposed of similarly. First, it is seen from (17) that 

a normal form of O in the case (ii) is 

(24) O—B(¢:) + B($2) - or O=14B(¢:) + 

where the angles ¢1, ¢2,- - - satisfy the following pair of conditions: | ¢m| <7 

holds for every m, and lim inf | t—¢m | —0 as m—>0. In view of the first 

of these conditions, (1) and (24) show that O is a rotation, and that it 

remains a rotation (and of type (*)) if one term of (24), say the first, is 

changed from B(¢,) to B(¢: + provided that <<e<a—|¢,|. But if 

O, denotes the matrix which thus results from (24), then as 

and so O is a cluster point of rotations of type (*). In order to prove that 

O is a cluster point of reflections of type (*) as well, use must be made of 

the second of the conditions, which is lim inf | — $m =0 as m>00. 

Since the latter condition implies that ¢’»—>z holds for a suitable 
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infinite subsequence Of °°, it is clear that, with 

reference to every « > 0, it is possible to write (24) in the form 

(25) 0=0.+ (—I+ A), 

where the plus sign occurring in — J -+- A, refers to ordinary matrix addition, 

—I is B(x) + B(r) +---, and the-infinite matrix A, represents a correc- 

tion term, with | Ae | <e. It follows from (1), and from the fact that 0 

is in case (ii), that O, is a rotation not containing —1 in its point spectrum. 

It follows therefore from the remarks preceding the statements of cases (i)- 

(iii) that O will be proved to be a cluster point of reflections of type (*) if it 

is ascertained that, for every « > 0, the inequality |(— I + Ae) —R| < 2e can 

be satisfied by a certain reflection R—R(e). But since | Ae| <e, the 

existence of such an R = R(e) follows if | —I— Ry», | +0, as mo, holds 

for some sequence of reflections #,, R.,- - - of type (*). Since the existence 

of such reflections F,, was proved in the treatment of case (iii), the treatment 

of case (ii) is now complete. 

17. The treatment of the remaining case, (i), will now be reduced to 

the following 

Lemma. Jf —1 1s in the spectrum, but not in the point spectrum, of 

an orthogonal matrix O, then there exists a sequence of orthogonal matrices 

01, - satisfying |O—Om|—->0, as and having the property 

that —1 is a cluster point of the point spectrum, but is not in the point 

spectrum, of Om, where m=1,2,-°-. 

Needless to say, the matrices O and 0,, O2,- - - are rotations by necessity : 

ef. (1). 

It is clear that if an O is in case (i), then it satisfies the assumptions 

of the Lemma (but the converse is not true). If a matrix Om of the above 

sequence does not possess any continuous spectrum, then it is in case (ii), 

so that both rotations and reflections (of type (*)), say R,, must cluster at 

Om. The last assertion remains true even if O, does possess a continuous 

spectrum. In fact, if Om —C + P. (in accordance with (16) ; note that — 1 

is a cluster point of the point spectrum), then P,, is in case (ii), so that both 

rotations and reflections R, of type (*) cluster at P,; hence both rotations 

and reflections ( + R;, of this same type cluster at O,,; cf. the remarks pre- 

ceding the statements of (i)-(iii) in $16. It follows therefore from the 

Lemma that every O of the case (i) must be a cluster point (on Q) of rotations 

and reflections of type (*). Accordingly, the proof of (II) will be complete 

if the Lemma is proved. 
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18. To this end, let O be a matrix satisfying the assumptions of the 

Lemma. Then 1 is in the essential spectrum, but not in the point spectrum, 

of the orthogonal matrix —O. Hence, if H(A) denotes the spectral matrix, 

satisfying (21a)-(22b), of O, then H(A) is not constant on any interval 

0<A< 7 and is continuous at \=0. In view of the parenthetical remark 

in (22a), the latter property means that 

(26) E(+0)=£(0) =| 0]. 

On the other hand, the non-constancy of H(A) on any interval O<A<7 

means that, with reference to every positive « which is less than =, it is possible 

to choose a sequence of values X—An, —An(e) satisfying 

(27) €=A >A 0, where n->0, 

and 

(28) E (An) Where n=0,1,2,---. 

Disregarding an enumerable set of A-values, one may assume that Avo, A1, Az, °° 

are continuity points of £(A) + 

With reference to the sequence (27), where A»—An(e), define for 

—o<A<o a matrix function (A) = F,(A) as follows: 

(29) F(A) =EB(An) if Ama and F(2r—A) = Ay) 

if A < An 

and 

(30) F(A) if == Ao), 

finally F(A) 0 || if ASO and F(A) if Then it is seen 

from (26) and (21a)-(22b), where F(A) is the spectral matrix of a Hermitian 

matrix, that 

and that F(A) is the spectral matrix of the Hermitian matrix 

2-0 

(32) dF -f AdF (A), 

+0 

and therefore that of the unitary matrix e*”. 

Clearly, F(A) is a step-function on the outside of the interval 

e<2A< 2x—e, with jumps possible, for Ae, only at the A-values (27), 

and which, in view of (28), take place at each of the values (27), clustering 

at 0. Hence e*” has no continuous spectrum near the value e#° — 1, and its 

64 
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point spectrum clusters at the value e#? —1, which value is not in the point 

spectrum of 

In addition, since conditions (21a)-(22b) are satisfied by the given 

E(A), it is seen from (29), (30) and (31) and the properties of the sequence 

do, Ar, A2,* * + that these conditions are satisfied if H is replaced by F. But 

the satisfaction of (22a)-(22b) by HF means that the unitary matrix 

having the spectral matrix /’(A) is real, i. e., orthogonal. 

Accordingly, e’” is an orthogonal matrix which has no continuous 

spectrum near the value 1, and which contains 1 is in its essential spectrum 

but not in its point spectrum. 

19. By construction, H is here a function, H,, of «, where 0<<e< 7. 

It will now be shown that 

(33) 0/50 ase>0in H= 

First, since H(A) and F(A) are spectral matrices, 

(34) | f (A) AdF(A)| Se+e. 

0 0 

In virtue of (26), (31) and (21a) (the last being valid for F itself and 

for E—=F), 

€ 

exp f + f ed 
0 0 

holds for / itself and for HF. It is seen from (27). (29) and (34) 

that, as «—> 0, 

€ 

f e®dH (A) = f (Xr) =0(1). 

0 0 

Disregarding an enumerable set of «-values, choose « so that Ae is a con- 

tinuity point of H(A) and of H(2r—A) (and hence of F(A) and of 

F'(22r—X); cf. (29) and (30)). Then, by the last formula line and (22b), 

valid for ZH — F as well as for FH itself, the relation 

2r 27 

holds; cf. (22b), valid for HZ itself and for H = F, and note that the present 
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E(A) and F(A) are continuous at A=0O as well as at A=2z7. Finally, 

from (30), 
2m-€-0 

€+0 €+0 

Addition of the last three formula lines shows that 

2rr 27 

(35) 4 ed F(A) —0(1) 
0 0 

as e—> 0, where (A) = F,.(A). But the difference on the left of (35) is 

identical with — O —e##, since H(A) and F(A) have been defined as the 

spectral matrices of —O and e‘”, respectively. Consequently, (35) proves 

(33). 

20. If m—1,2,---, let Om denote the matrix —e‘# which results 

if « in H =H, is chosen to be «n(>0), where em—>0 as m—>oo. Then 

| On—O|—-0, by (33). On the other hand, the last sentence of $18 

shows that every O,, has all the properties claimed in the Lemma of § 17. 

Thus the proof of the Lemma (and hence that of (II)) is complete. 

The ‘‘ Boundary ’’ [$2] of the $2-Space. 

21. If H(A), where 0 = A S 2z, is the spectral matrix of an orthogonal 

matrix O, define the number y—y(O), where 0S yX7, as follows: 

According as A = z is not or is a point of constancy of H(A) (i.e., according 

as — 1 is or is not in the spectrum of O), let y denote 0 or the largest number 

(S7) having the property that H(A) = F(a) whenever | A—a| <y. Then 

(36) | | = 2sin}(x— y) 

holds in either case. In fact, since 

f (1 —e*)dE(a), 

it is readily seen from the definition of y= y(O) that | 1— e* | is the 

least upper bound of the length of the vector (I —O)z when z varies over 

all vectors of unit length. But this evaluation of l.u.b. |(I—O)z|/| 2 | is 
equivalent to (36). 
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It is seen from the definition, (2), of the “boundary,” [0], of Q that 

the particular case y 0 of (36) can be formulated as follows: 

(i) An orthogonal matrix, O, represents a point on the “ boundary,” 

[Q], if and only if —1 ts in the spectrum of O. 

This criterion, (i), leads to the following corollary: 

(ii) The “boundary,” [Q], contains all reflections and some rotations. 

In fact, (1) implies that —1 is in the spectrum of O if, but not only if, 

O is a reflection. Hence (ii) follows from (i). Clearly, (14) is just a 

restatement of (ii). 

22. Let F denote the diagonal matrix —1-+ D, where D is the 

orthogonal matrix defined at the beginning of §13. Then the essential 

spectrum of either of the matrices D, F, being the single value 1, does not 

contain the value —1. Furthermore, (I) implies that F is a rotation and 

that D is a reflection. It follows therefore from (II) that the rotation F is 

not in the closure of all reflections of 2 and that the reflection D is not in 

the closure of all rotations of Q. But (i) and the definitions of D and F 

show that both D and F are in [Q]. Since [Q] is a subset of Q, it follows 

that [Q] contains a reflection (=D) which is not in the closure of the 

rotations contained in [Q]. It is also seen that [Q] contains a rotation 

(=f) which is not in the closure of the reflections contained in [Q], since, 

according to (ii), all reflections are in [Q]. Accordingly, the situation is as 

follows : 

(iii) Neither the set of all reflections nor the set of all rotations con- 

tained in [Q] is dense on [Q]. 

It was also seen that [Q] contains a point (=D) which fails to be in 

the closure of all rotations of 2. Since 2 — [Q] is a subset of Q, it follows 

that the names “ boundary of 0” and “ interior of Q” for the two sets (2) 

are not justifiable in terms of the topology of Q: 

(iv) The “ boundary,” [Q], of Q is not a subset of the closure of the 

“interior,” 2 —[Q], of (4. e., Q is not the closure of Q —[Q]). 

What is true (but trivial) is the following fact: 

(v) The “boundary,” [Q], ts a closed set (1. ¢., the “ interior,” 29 — [QO], 

is an open set) on Q. 

For, if O is any point of © for which | 1—O | is less than 2, say 2 —e, 

then, since © is a metric space, |l—Q |< 2—4«(< 2) holds whenever 
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|Q@—O| <e. In view of (2), this means that 2 — [Q] is an open set. 

Hence (v) follows by complementation. 

23. By a dualization of the content of (iii), the following facts will 

now be proved: 

(vi) Neither the set of the reflections nor the set of the rotations con- 

tained in [Q] is an open set (hence, neither of these sets is a closed set) on Q. 

In view of (ii), those assertions of (vi) which concern the reflections 

are contained in the corresponding assertions of (*), §2, proved in § 13. 

Hence, in order to prove (vi), it is sufficient to show that the product [Q]Q, 

representing that portion of the set, 2, of all rotations which is on the 

“boundary ” of , is neither an open set nor a closed set (on 2). In other 

words, it is sufficient to show that the set [Q]Q) contains a point, say Q, 

and that the set Q—Q, (which is identical with the product of [Q] and 

Q —Q,) contains another point, say RP, such that Q is in the closure of Q —Q, 

and F# is in the closure of [2]. The existence of Q is assured by (II) if 

Q is chosen to be any rotation with — 1 in its essential spectrum. 

In order to guarantee the existence of R one can proceed as follows: 

Let A denote a rotation for which — 1 is in the essential spectrum but is not 

the point spectrum. Then A, ——1- A is a reflection by (1), while (IT) 

shows there exists a sequence of reflections, B,, such that B,— A, hence 

—1+B,—-4A,. Another application of (1) shows that the matrices 

—1-+B, are rotations (which clearly belong to [Q]). The point R may 

now be chosen to be A, and the proof of (vi) is complete. 

24. In view of the parenthetical restatement in (iv), there arises the 

question concerning a characterization of those orthogonal matrices which 

are in the closure of Q—[Q]. The situation will be described by 

(III) A point, O, of Q is not in the closure of Q—[Q] tf and only 

if O is in the interior of Q —Qp. 

In contrast to (iv), the definition of an interior point is now based on 

we -metric of § 1. the topology of Q, as determined by the “strong” | 0, — 0, 

In this terminology, the Corollary of (II) can of course be restated as follows: 

(II bis) Whether a point, O, of Q be in Q. or in Q—A), tt ts an 

interior point of Q. or of 2—Q, if and only if —1 is not in the essential 

spectrum of the orthogonal matrix represented by the point O. 

This formulation, (II bis), of (II) is adjusted to the following proof 

of (III). 



THE ORTHOGONAL GROUP IN HILBERT SPACE. 69 

25. Consider first that assertion of (III) in which a given O is supposed 

to be a point in the interior of Q—Q,). Thus, in a sufficiently small vicinity 

of O (with reference to the “strong” | 0, — Oz |-metric), there exist no 

rotations. Since the set © — [Q] consists only of rotations, the proof of the 

first assertion of (III) is complete. 

The remaining assertion of (III) is that if a point, O, of © is not in 

the interior of 2 —Q), then 

(37) O is in the closure of 2 —- [Q]. 

But an O is not in the interior of Q —Q, either because (a) the point O 

is in Q) or because (b) the point O is in 2 —Q, and in the closure of Mp. 

It is however clear that if (37) is granted to be true in case (a), then (37) 

must be true in case (b) also. Hence it is sufficient to prove (37) in case (a), 

i.e., under the assumption that O is a rotation. Then (I) shows that, if O 

is assumed to be given in its appropriate normal form (16)-(18), the Pr 

occurring in the last of the three possibilities (16) cannot be of type (18) 

and must therefore be of type (17). On the other hand, it is readily seen 

that (37) will be proved for the third of the three cases (16) if it is proved 

for the second and for the first.* Consequently, if the trivial term 1 men- 

tioned in (17) is omitted, it is sufficient to prove (37) under the assumption 

that the rotation O is either of the form 

(38) O = B(d:) + ++ where | ¢m—a| Sz, 
or of the form O = C, where B(¢) is a binary rotation and C has no point 

spectrum. 

Consider first the case O4C. Then it is clear from (38) that, corre- 

sponding to every positive « which is less than z, it is possible to choose a 

sequence of ¢-values ¢1', dof: - - satisfying the following two conditions: 

| <7 holds for every m and |O—0O£|—0 holds as «0, 

where O€ denotes the orthogonal matrix B(¢,‘) + B(¢:2*) +, Because 

of the second of these conditions, (37) will follow if it is ascertained that 

the point Of of © is in Q— [Q], i.e., that Of is not in [Q]. But the first 

of the two conditions shows that every value occurring in the spectrum of O¢ 

differs from —1—e‘™ by not less than e (in angular distance). Hence, 

—1 is not in the spectrum of O*. It follows therefore from (i), § 21, that 

Of is not in [Q]. This proves (37) for the case (38). 

3’ This is clear when n is © in the third case of (16); on the other hand, if n is 

finite (and hence, by (I), even), the proof will be clear from the consideration below, 

the treatment for P, being essentially similar to that for P,. 

E 

¥ 
i 
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26. Similarly, (37) will be proved for the remaining case, where O = C, 

if it is shown that there belongs to every « > 0 an orthogonal matrix, say O,, 

having the following properties: The value —1 is not in the spectrum of O, 

and |C—0O,.|-—>0 holds as e—0. But the construction of such an 0, 

hardly differs from the construction of O* in the case of (38). 

First, if H(A), where 0 = AS 2z, denotes the spectral matrix of — C, 

then, since C has no point spectrum, /(A) is continuous throughout. If 

0<e<z, define F(A) by F(A) =| 0 ||, or I according as 

e<AS2r—e or Thus the conditions (21a)-(22b), 

which are satisfied by the given H, become satisfied by /. It is seen that 

(34) is also valid and the procedure is now similar to that of §19. It is 

clear that — e*” does not have — 1 in its spectrum and that | C + e*7 |—>0 

as e—>0. Thus O, can be defined to be —e‘# and the proof of (III) is 

complete. 

Arcwise Connections. 

27. If A is a subset of © and if P, Q is a pair of points in A, let the 

symbol P(A)Q denote that either P == Q or, if P ~Q, there exists in QO a 

continuous path O= O(t),aSt=b (=a), having the following properties: 

O(t) is a point of A (for every t) and O(a) =P, O(b) =Q. Thus Q(A)P 

implies that P(A)Q and that Q(A)R whenever P(A) R. 

If P(A)Q holds for every pair of points P,Q contained in A, then A is 

called arcwise connected. This is the meaning of the six assertions (9)-(13), 

(15) of the introduction, which have not been used thus far. The purpose 

of this chapter is to prove the last four of those six assertions. The first 

two of them have already been proved (cf. § 4). 

The proofs will involve the circumstance that if A is any of the four sets 

in question, then A is an invariant subset of 2 (simply because the same is 

true of both AQ, and A=[Q]). In other words, all the subsets A of 2 

which are to be considered have the property 

(39) RAR“ =A, 

where F is any orthogonal matrix (so that R need not be in A). It is clear 

from (9) that R(Q)I. hence O(A)ROR-, so that, in order to prove that an 

O-set A satisfying (39) is arcwise connected, it is sufficient to exhibit in A 

a single point O, having the property that ROR*(A)QO, holds for every point 

O of A and some point R of Q (where R, in contrast to the fixed Oo, is a 

function of O). In particular, it is allowed to assume that O is given in an 

orthogonal normal form, (16)-(18), even though such a form of a given 
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matrix of A cannot in general be attained by using orthogonal transformations 

contained in A. 

28. The proofs will be deduced from the following theorem: 

(IV) Let R be an orthogonal matric, E(X) the spectral matrix of — R, 

finally t a parameter on the range 0StS1. Then 

(a) if —1 is not in the potnt spectrum of R, the matrix defined by 

27 

(40) f dB (X) ; (Ri = = 1), 

0 

is orthogonal, and —1 is not in tts point spectrum (for any t) ; 

(8) if —1%s not in the spectrum of R, it is not in the spectrum of R;; 

(y) under the assumption made in (a), 

(41) an 

Since the assumption in (a) means (and therefore the assumption in 

(8) implies) that 1 is not in the point spectrum of —R, both A=0 and 

\ = 2 are continuity points of the spectral matrix, H(A), of —R, and so 

(42) 

in (40). (Actually, A = 22 is always a continuity point for any spectral 

matrix #(A) under the normalization (21la).) It is readily verified from 

(21a)-(22b) that the matrix (40), where 0 =¢=1, is real. But (40) surely 

is a unitary matrix (in fact, H(A) is a spectral matrix for OAS 2z). 

Consequently, (40) is an orthogonal matrix, as claimed by the first part of (a). 

In order to prove the second claim of (a), suppose, if possible, that — 1 

is in the point spectrum of A; (for some ¢). This means that (for that ¢) 

there exists a unit vector x satisfying (J + R;)e—0. But it is seen from 

(40) and (42) that 
27-0 

+0 

holds for every unit vector z, not only for those satisfying the assumption 

(I+ R:)c=0. Hence, the latter implies the vanishing of the integral (43). 

But 

: 

€ 

? 

] 

27-0 
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is an identity in z On the other hand, it is seen from the assumption 

0=t=1 that the function integrated in (43) is positive at every point A 

of the (open) interval of integration. Consequently, the vanishing of the 

integral (43) implies that z—0. Since this contradicts the assumption 

|x| 1, the proof of (a) is complete. 

In order to prove (8), suppose that —1 is not in the spectrum of R. 

This means that A= 0 and A = 2a are points of constancy (rather than, as 

in the more general case of (a), just points of continuity) of H(A), i.e., that 

(42) can be improved to 

(45) » where y<z. 

But 0<yp<a and 0St=1 imply that the function integrated in (43) 

has a positive minimum on the interval »= AS 2r—uy. It follows therefore 

from (43), (44) and (45) that |(Z + R;)«# |? => const. | x |?, where the const. 

is positive and independent of z. In other words, the quadratic form 

|(I + R,)z |? is positive definite. But a classical criterion of Toeplitz (cf., 

e.g., [4], p. 138) implies that if A is a real, bounded, normal matrix, then 

A” exists (as a unique, bounded reciprocal) if and only if the quadratic form 

| Ax |* is positive definite. Consequently, J + R; has a bounded reciprocal 

matrix. This proves part (8) of (IV). 

Finally, in order to prove (y), it is sufficient to observe that, since #(X) 

is a spectral matrix on 0 [AS 2z, the (unitary) matrix 

27 21 

Wi= etdE(X) satisfies f (1) = WyWo, 

0 

and that R; =e by (40). 

29. Proof of (11). Let J?*-*, where h = 1, 2,- - -, denote the (2h — 1)- 

rowed unit matrix. Then (1) shows that an orthogonal matrix is a reflection 

if and only if it is orthogonally equivalent to a matrix of the form — J?"-1 + R, 

where F denotes a rotation not containing —1 in its point spectrum. Since 

—it1I——l[I'+1 isa reflection, it follows from the remarks made at the 

end of § 27 that (11) is equivalent to the following statement: 

(46) (— 4+ R)(A)(— 1), where A=2—Q, 

27-0 

+0 0 
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Here F# denotes any rotation not containing —1 in its point spectrum. 

But part (a) of (IV) shows that any such FR can be connected to I by a 

continuous path in such a way that — 1 is not contained in the point spectrum 

of any matrix, #;, representing a point of the path. Since this means that 

every point of the path R; is a rotation, every point of the path — [?’-1 4+ Be 

is a reflection, i.e., a point of Q—Q). But the end points, #0 and ¢ 1, 

of the latter path are — J?*1 4. J and — J?" 4. R. Consequently, 

(— + + 1). 
Hence, in order to prove (46), it is sufficient to ascertain the truth of the 

following relation: 

(— T)(A)(— I? +1), where 

In order to prove (47), consider the matrix 

(48) 4 B(xt) +1, 
in which the number of B-terms is chosen to be h—1 (<0, possibly 0). 

Since B(¢) denotes the binary matrix representing a rotation by the angle ¢, 

it is clear that (48) is a reflection (i.e., a point of 2 —Q,) for every ¢, and 

that (48) becomes — + Jat t—0and att=—1. This proves 

(47). Hence the proof of (11) is now complete. 

30. Proof of (12). Let (15), to be proved below, be granted. Then 

it is clear from (11) and (14) that, in order to prove (12), it is sufficient 

to exhibit on [Q] one rotation and one reflection, say O, and O., which can 

be joined by a continuous path contained in [Q]. But (i) in § 21 shows that 

both matrices —1-+ (+7) are in [Q] and, according to (1), only one of 

them is a reflection. Consequently, (12) will follow if it is ascertained that 

(49) O-([2])O*, where =—1-+ (+1). 

But it is seen from (i) in § 21 that the truth of (49) is equivalent to the 

truth of 

(50) — I(ayl. 

Finally, (50) is an obvious consequence of (9). In fact, since both matrices 

+ J are rotations, (10) implies that 

(50 bis) — 1(Q))I, 

which is more than (50). 
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31. Proof of (13). Criterion (i) of § 21 shows that a point O of Q 

is in Q — [Q] if and only if —1 is not in the spectrum of O. This implies 

that J is in Q—[Q] and that (13) will be proved if it is shown that 

(51) 0(2—[a])I 

holds whenever O is an orthogonal matrix not containing — 1 in its spectrum. 

In order to prove (51) for every such O, apply part (8) of (IV) to 

R=O. This supplies the existence of a continuous path R:(0St1) 

which begins at the point J, ends at the point 2 =O, and is such that no 

matrix R;, representing an arbitrary point of the path, will have —1 in its 

spectrum. In view of (i), § 21, this means that every point of the path will 

be in Q—[Q]. Since the path connects I to O, the truth of (51) follows. 

32. Proof of (15). According to (i), $21, and (1), an O is in the 

intersection of [Q] and Q, if and only if —1 is in the spectrum of O and 

occurs in the point spectrum of O with a multiplicity which is either oo or 

even (20). Clearly, O is in [Q]Q, if and only if it is orthogonally equi- 

valent to a matrix of the form 

(52) O=R or O=1/4+R, 

where J/ is the j-rowed unit matrix (1 j=) and R is a rotation which 

has —1 in its spectrum and does not have + 1 in its point spectrum. (In 

the first case of (52), R is, of course, infinite; in the second case, R may be 

either finite or infinite.) It is sufficient to show that O can be connected by 

a path in [Q]Q, to a fixed matrix of this space, say to — I. 

Let 

27-0 

Ram f (A) 
+0 

denote the spectral resolution of R, and define R;, for 0S t= 1, by 

— 
+0 

Then the matrices Rf; are orthogonal for all ¢ and join Ry = —I* to Ri = R; 

cf. (IV). It is easy to see that —1 is, for 0 << ¢=11, in the spectrum of 2,, 

and that the multiplicity of —1 in the point spectrum of R; is identical 

with that of —1 in the point spectrum of R. (In fact, if n>, then 

(R+1)t,—« holds for a sequence of unit vectors xz, if and only if 
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-+1)x,—0 holds for every fixed ¢ on 0<¢1; while 

holds for a vector x ~€0 if and only if (R; + J)z —0 holds for every fixed ¢ 

on 0 < t= 1; cf. the proof of (IV) in § 28.) Consequently, it is clear from 

(52) that O([Q]Q,)N, where N = —TI or N = UM, with 

M =I) + (--I*), where 1S jSo and 1SkSo. 

Since the proof of (15) is complete if N —— I, it remains only to show that 

(53) M ([2]Q) (—Z). 

If joo, then Ji —T, hence (53) follows, since J can be connected to 

—IinQ. If j<o, thn (—I)+(—I). But is 
a rotation and can therefore be joined to —TJ in Qo, so that (53) follows as 

before. This completes the proof of (15). 

33. Assertions (A) and (B) of §5 will now be proved. In order to 

prove (A), it is sufficient to note that Q(t) — B(at) +I, where OStS1 
and where B(¢) is the binary rotation defined in § 7, is a continuous path 

satisfying the following conditions: Q(1) is in [Q], Q(t) is in Q— [Q] when 

0St <1, finally 7—Q(0). Assertion (B) is a consequence of (II); one 

need only choose the O of (B) to be a reflection which does not have —1 

in its essential spectrum. 

APPENDIX. On Bounded Matrices. 

34. The following considerations concern themselves with facts which 

correspond to those of §21-§26 and (9)-(15) if Q, the space of all (real) 

orthogonal matrices, is replaced by the larger space, say ©, of all bounded 

real matrices, A. It turns out that a formal analogy results if what corre- 

sponds to the “ boundary,” [Q], of Q is taken to be the set, say [©], of those 

matrices A which fail to have a (unique) bounded reciprocal matrix, A-. 

Thus ® — [®] and [®] consist of all non-singular and of all singular matrices 

which represent a linear mapping of the real Hilbert space, 9, on the whole 

of # or on a proper subset of St, respectively. It is understood that © is 

meant to be the metric space on which the distance, | 4, — Az |, is defined 

as at the beginning of § 1. 

35. What corresponds to (v) in § 22 is the following fact (which is 

true for finite matrices also) : 

(a) The set [@] is closed, i.e., the set ©—[®] ts open (on @). 

15 



CALVIN R. PUTNAM AND AUREL WINTNER. 

In order to prove this assertion, (a), it is sufficient to note that © is a 

complete space and that, if A has a unique, bounded reciprocal A-* (i.e., if A 

is in ®©— [@]), then the partial sums of both series 

n=0 n=0 

the formal Liouville series for (A + X)-*, form convergent sequences on ® 

whenever | X | is small enough (smaller than 1/| A |). 

Clearly, (a) implies the first of the following two assertions: 

(8) Neither [©] nor © —[®@] ts dense on ®. 

The second assertion of (8) is false for finite matrices and represents 

the analogue of (iv), § 22. It will be proved by showing that there exist 

on ® points A which are not in the closure of @—[@]. In fact, it will be 

proved that an A satisfies this condition if the spectra of AA’ and A’A are 

not identical, 

(54) sp(AA’) ~sp(A4’A), 

where the prime denotes the operation of transposition. 

36. Condition (54) cannot of course be fulfilled by a finite matrix. 

That it can be satisfied by a point A of @, is shown by Toeplitz’s example of 

the matrix, A, which belongs to the infinite bilinear form 2,y2 + Xoy3 + Tey 

+--+. In fact, (54) holds for this A, since A’A =I but AA’ —=0+7. 

Accordingly, it is sufficient to prove the following theorem: 

(V) A point A of © cannot be in the closure of O—[®] if tt 

satisfies (54). 

First, if H and H,, where n = 1, 2,- - - are bounded Hermitian matrices, 

then, as n—>00, 

(55) | H | implies that lim sp(H,) =sp(H), 

where “ lim sp(H,) = sp(H)” is meant to symbolize the following situation: + 

A number, say A, is in sp(#) if and only if it is possible to find in every 

sp(H,) some number, say A», in such a way that A as 00. 

‘The truth of the implication (55), which may be well-known, follows readily in 
terms of spectral resolutions from the following obvious fact: If a, a,.. . denotes 

a sequence of unit vectors and if mw is any real number, then the limit relation 

| (H 70, as holds if and only if |(H,— > 0. 

In this connection, cf. P. Hartman and A. Wintner, vol. 71 (1949), pp. 865-878 of 

this Journal. 
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Next, if A is in © — [0], and if B denotes the point A-* of © — [®], 

then B transforms AA’ into BAA’B-, which is A’A. Since the spectrum of a 

bounded matrix remains invariant under transformation by a bounded matrix 

which has a unique bounded reciprocal matrix, it follows that 

(56) sp(AA’) = sp(A’A) 

if A is in O— [@]. 

37. In order to prove (V), § 36, suppose that it is false. Then there 

exists on © a point A satisfying (54) and having the property that 

| An—A|—-0, as n—>00, holds for a sequence of points A,, - con- 

tained in ®— [@]. Hence, by the end of § 36, 

sp(AnA’n) = sp(A’,An) 

holds for every n. On the other hand, | A, — A | > 0 implies that | A’, — A’! 

— 0 and that both product relations | A,A’,— AA’ | 0, | A’*nAn— A’A | > 0 

are true. Hence, if (55) is applied to both product sequences, it follows that 

lim sp(A,A’,) =sp(AA’), lim sp(A’nAn) = sp(A’A). 

But the last two formula lines imply (56) for the given A. The latter was, 

however, supposed to satisfy (54). This contradiction proves (V), § 36. 

38. The result can be expressed as follows: Condition (56) is necessary ® 

in order that a point A of © be in the closure of © — [@]. 

It is known that, if A is any finite matrix, then AA’ and A’A are 

orthogonally equivalent, which is more than (56). One might therefore 

expect that, for a point A of ®— [@], the necessary condition (56) can be 

improved to the orthogonal equivalence of AA’ and A’A. But this refine- 

ment of (56) proves to be false. A counter-example is supplied by the matrix, 

A, of the bilinear form + + +, if any 

sequence of non-vanishing numbers satisfying «, >0 as n>. 

In fact, the latter condition implies that A is completely continuous. 

This in turn implies (cf. below) that A is in the closure of 9— [9]. 

Nevertheless, AA’ and A’A are not orthogonally equivalent, since they are 

two diagonal matrices one of which does, while the other does not, contain 0 

in the diagonal, since «,? ~0. 

5 That condition (56) is not sufficient as well is shown by the simple example, 

pointed out to us by Professor Hartman, which results if the example of Toeplitz, 
referred to in § 36, is bordered by a row of zeros and a column of zeros. 



CALVIN R. PUTNAM AND AUREL WINTNER. 

A class substantially more general than that of all real completely con- 

tinuous matrices is defined by the following requirement for a point A of @: 

There does not exist any positive a = a(A) having the property that (AJ — A)* 

fails to exist (as a unique, bounded reciprocal) for every A satisfying |X| < a. 

Then A,J — A is in © — [@] for certain A, > 0 as n—>o. Since this implies 

that A, — A —A,I satisfies | A, — A | +0 on ®, it follows that A is in the 
closure of ® — [@] (hence, in particular, (56) is satisfied). Cf. [3], p. 241. 

Another sufficient condition in order that a point A of ® be in the 

closure of ®©—[®@] consists in AA’ —A’A. In fact, A is then normal, 

hence such as to have a spectral matrix, from which the existence of a 

sequence A;,As,- - - contained in ®©—[@] and satisfying | A, 

can readily be concluded. 

39. Let T be the metric space of all (real or complex) bounded matrices 

A, the distance between two points, A, and A», of I being defined as the 

least upper bound of the length of the vector (A; Az)y when y varies over 

all unit vectors of the complex Hilbert space, and let [If] denote the subset 

of T consisting of those matrices A for which there does not exist a (unique) 

bounded reciprocal, A. Then it is clear from the above proofs that theorems 

(a), (8) of §35 and (V) of § 36 remain true tf @, [0] and (54) are 

replaced by T, [fT] and sp(AA*) ~sp(A*A), respectively, 

where A* denote the complex conjugate of A’. 
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ON PERTURBATIONS OF THE CONTINUOUS SPECTRUM OF THE 

HARMONIC OSCILLATOR.* 

By Puitip Hartman and AuREL WINTNER. 

1. Let f(t) be a real-valued continuous function on the half-line 

0t<o. Consider on the latter the differential equation 

(1) + 
with a homogeneous, linear boundary condition at 0, such as 7(0) = 0 

or, more generally, 

(2) cosa 2’(0) sna=0, 

where 0Xa<-z. If (1) is of Grenzpunkt type, that is, if (1) and (2) 

determine a self-adjoint problem on the LZ?(0,0)-space (for some and/or 

every a), let S, denote the spectrum of this problem. Finally, let C, denote 

that subset of S, which represents the continuous spectrum. 

The latter will be meant in Hilbert’s sense, that is, in terms of the 

A-set of non-constancy of the sum of the two continuous components (if any) 

of the spectral resolution analyzed into its three Lebesgue components, which 

are absolutely continuous, continuous but purely singular and purely discon- 

tinuous, respectively. No example of a self-adjoint problem (1)-(2) seems 

to be known in which the second of these three components is present. 

In the case of the harmonic oscillator 

(3) + = 0, 

that is, in the case f(t) = 0 of (1), the explicit form of the general solution 

shows that 

(4) (1) is of Grenzpunkt type 

and that every non-negative A is in Cg, while no negative A is in the closure 

of S,; so that, in particular, 

(5) Sa’ = [0, 0) 

where S,’ is the closure of Sz. In what follows, there will be delimited for 

an arbitrary “ perturbation,” f(t), of (3) that “degree of smallness” (for 

* Received November 16, 1949; revised October 4, 1951. 
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large ¢) under which (4) and at least the following weakened form of (5) 

prove to be true: 

(6) Sq’ D[0,0) in (1). 

It should be mentioned that the closure, S,’, of Sz, the so-called essential 

spectrum of (1), is always independent of a (whenever (1) holds) ; cf. [7], 

p. 251 and, for direct characterizations of this a-invariant d-set, [3], [3 bis]. 

2. <A sufficient “degree of smallness” turns out to be the following 

specification of a “small” f: 

T 

(7) J a= 0(7) 
or, more generally, 

i 

(8) lim inf T= | f(t)| dt =0. 
© 

In other words, (8) implies both (4) and (6). This criterion proves to be 

of a final nature, in the sense that (8) cannot be relaxed to 

T 

(9) lim int | f(t)| dtSc<oa, 
0 4 

nor even to 

T 

(10) lim sup rf | f(t) |dt <0, 
T > © 

0 

since (10) is insufficient for (6); cf. the end of Section 7. On the other 

hand, it can be concluded from [4] that (10), and even (9), is sufficient 

for (4) alone. 

3. It is natural to ask why to consider (6), instead of the sharper 

statement (5). The answer is that (5) can fail to be true if (8), or for that 

matter (7), is satisfied. In fact, it will be shown in Section 6 that not only 

the negation of (5) but even the possibility of 

(11) Sq’ = 0) 

can be realized if only (7%) is assumed. Thus, while (6) can, 

(12) Sa’ C [0, ) 

cannot, be concluded from (8) or (7). 

| 

1 
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The situation is changed entirely if (7) is replaced by the more drastic 

assumption 

(13) f(t) =o0(1), 

where t—>o. In fact, it was shown in [2] that (13) implies (5). But the 

proofs of the implication (13) > (5) in [2] and [5] are quite involved. 

A simple proof follows from the general result in [3]. It will be shown 

under (i) in Section 7 below that (13) — (5) can also be proved very simply 

by an appeal to standard theorems in the theory of operators in Hilbert space. 

4. As mentioned above, both (8) — (4) and (8) — (6) are true but 

in the second of these conclusions, the hypothesis (8) cannot be relaxed 

to (10). But it turns out that (8) — (6) can be improved in a direction 

which relaxes the hypothesis (8) to (9), with a fied c= 0 and in such a way 

that the conclusion (6) becomes replaced by one depending on the numerical 

value of c and leading to (6) when c= 0. 

In order to formulate this refinement of (8) — (6), it will be con- 

venient to use the following definition: With reference to a fixed positive 

number c¢, a differential equation (1) has the property (c) if (4) is satisfied 

and if every interval of the form 

(14) [A, A + 4c + 4c?/A], where A > 0, 

contains at least one point of S,’. Then the generalization in question can 

be formulated as follows: For any gwen c= 0, property (c) holds whenever 

(9) is satisfied. This will be seen at the end of Section 5. 

Except for the upper end point of the interval in (14), which is sharper 

in [5], the last italicized statement is a generalization of a result, proved in 

[5], which claims the corresponding property (c) under the assumption that 

(15) Se 

rather than just (9), is satisfied. 

5. The proofs will be based on the following fact: If f(t) is real- 

valued and continuous, and if N(7,A) denotes the number of zeros of a 

(real-valued) solution x(t) =2)(t) 0 of (1) on the interval OS ¢ST, 

then the inequality 

(16) | aN — MT | +04 f | f(t)| at 
holds for every A > 0 and for every T > 0. 

6 

0 
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In order to see this, use will be made of the fact that, since r(¢) and 

z(t) cannot vanish simultaneously, the relation 

(17) 6(t) —are tan {A*x(t) /2’(t)} 

and the choice of an initial determination (modz) at tO (such as 

0=0(0) <-) define a unique continuous function 6=6(t), and that the 

latter has a derivative @’(t), given by 

(18) 6’ = + + 

This follows from (17) by virtue of (1). 

If A > 0, it follows from (18) that 

On the other hand, it is seen from (17) that @(¢) becomes an integral multiple 

of « at exactly those ¢-values which are zeros of z(t), while (18) shows that 

6’(t) >0 whenever z(t) —0. Hence it is seen from the definition of 

N(T, A) that 

(20) | rN (T,A) —O(T) + 0(0)| S 2x. 

In order to obtain (16), it is sufficient to combine (20) with the 

inequality which results if (19) is integrated between ¢ 0 and t—T. 

Proof of (8) > (4). It follows from (8) and (16) that 

(21) lim inf N(T,A)/T 
T 

has the value A3/x. In particular, (21) is distinct from o. According to 

criterion (**) of [4], p. 207, this is sufficient for (4). 

Proof of (8) (6). Let 0<A<yp. Then, by (16), 

T 

(22) | a[N(T,n) —N(T,A)] — (8 — | 203 f | f(t)| dé. 

It follows therefore from (8) that 

(23) lim sup [N(T, ») — N(T,A)] =o. 

But Sturm’s separation theorem implies that the inequality 

N(t,u) —N(t,A) =N(T,») —N(T,A) —1 
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holds for every { > T. Hence it is clear that the “lim sup” in (23) can be 

replaced by a “lim,” i.e., that 

(24) N(T,») —N(T,A) as T> 0. 

Finally, it was shown in [3], p. 915, that the latter condition, (24), is 

sufficient in order that at least one point of S,’ be contained in the interval 

[A,#]. Since (24) holds whenever 0 <A < p, the proof of (6) is complete. 

Proof of (9) —>(c). This implication (i.e., the italicized assertion of 

Section 4) follows from (22) in the same way as (8) ~ (6) did. In fact, 

(9) implies (23) if 2c/d3, that is, if p> A+ 4ce+4+ 

6. The italicized statement of Section 3 concerning (11) will be proved 

by an example.* To this end, let f(t) be a function which is continuous 

for 0=t<o, satisfies (7) and has the constant value m on the interval 

(25) 

where m~—1,2,---. Such functions exist, since the contribution of the 

intervals (25) to the integral occurring in (7) is 0(7'), simply because 

M M 
3 f | f(t) | dt m? = 0(M*). 

m=1 m=1 

Let A be any point of the line —o<A<o. Since f(t) =m on the 

interval (25), a solution of (1) on (25) is x(t) cos (m + A)4¢t whenever 

m is so large that m-+2>0. Consider only such values of m. Then, by 

Sturm’s comparison theorem, the contribution of the interval (25) to the 

number N(7,2) is between the bounds 

{(m + — and {(m-+ 

whenever 7 = m*-+m. Hence, if » > A, the contribution of such an interval 

(25) to the difference in (24) is 

= {[(m + (m + r)#]m — 

Since the last { } is ~4(u—A)m’ as m->0, it follows that (24) is 

satisfied. Hence, if (I) in [8], p. 915, is applied in the same way as at the 

end of the Proof of (8) > (6) (Section 5), then, since [A,u] is now any 

interval, (11) follows. 

*In a similar context, a corresponding example was communicated to us by 
Dr. C. R. Putnam. 
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7. The following remarks, (i) and (ii), do not contain new results, 

but simple proofs of known theorems. 

(i) Suppose that f(t) satisfies (13). Then the difference of the two 

self-adjoint operators on L?(0,00) which are defined by a common boundary 

condition (2) and by the differential operators corresponding to (1) and (3), 

respectively, is completely continuous. In fact, the difference of these two 

self-adjoint operators is represented by the operator f(t)z(¢) which, in view 

of (13) (and of the continuity of f), is completely continuous on the x-space 

L?(0,00). But (5) is true in the case (3). It follows therefore from a 

classical theorem ([6], p. 384; cf. [1], p. 120) that (5) holds in the case 

(13) of (1) also. 

(ii) Besides (1), consider another differential equation of the form 

(1), say 
(26) + (A+ 

where f(t) and g(t) are real-valued and continuous for OSt<o. It is 

well-known that, if 

(27) | —f(t)| < const., (0St<o), 

then (1) must be of Grenzpunkt type whenever (26) is. In fact, this can be 

refined to an explicit asymptotic connection (as t—>0) between the general 

solution of (26) and that of (1), without assuming more than (27) and the 

negation of (4); see [8]. If this refinement is not required, a simple proof 

can be obtained along the lines of the argument applied under (i) above. In 

fact, what corresponds to the deviation f(¢)2(¢) in (i) is now the difference 

(28) {f(t) — g(t) 5 

ef. (1) and (26). But (2%) assures that (28) is a bounded operator on the 

a-space L?(0,00). Hence it is sufficient to apply a classical theorem ([1], 

p. 78), according to which the sum of a self-adjoint and of a bounded operator 

is always self-adjoint. 

The proof in (i) was based on a general criterion concerning the pertur- 

bation of a self-adjoint operator by a completely continuous one. It may be 

mentioned that this criterion can be generalized to a theorem on the pertur- 

bation of the spectrum of a self-adjoint operator by the addition of an 

arbitrary bounded self-adjoint operator (having a norm not exceeding a given 

value, c >0). The general theorem in question implies, as a special case, 

the result of [5] concerning the spectra of differential operators associated 

with (1) and (26), subject to the condition (27). 
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If (ii) is applied to g —0, then, since (1), (26) reduce to (1), (3), 

respectively, it follows that (15) is sufficient for (4). On the other hand, 

(6) does not follow from (15), or even from (15) and 

(29) lim inf | f(¢)| =0 
© 

together. This is seen by choosing f(t) — a cos ¢, where a is any non-vanishing 

constant. In fact, (1) then becomes Mathieu’s equation, for which the positive 

A-values not contained in 8,’ are known to form a sequence of intervals 

(“instability regions”) which cluster at A=oo. 

THE JOHNS HOPKINS UNIVERSITY. 
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ON THE GENUS OF THE FUNDAMENTAL REGION OF SOME 

SUBGROUPS OF THE MODULAR GROUP.* 

By Emit GrosswaLp. 

1. The purpose of this paper is to use uniformly a general method, in 

order to establish the genus of the fundamental region for congruence sub- 

groups (modulo primes) of the modular group. The results for the subgroups 

I'(p) and T,°(p) are known (see [2], p. 249, and [4], p. 832, respectively) ; 

those for Ty(p) are believed to be new. Let @ be a group of transformations, 

R a simply connected fundamental region for an automorphic function 

admitting the group G. Let 2Q be the number of sides of R, C the number 

of cycles of its corners and P the genus of R. Then 

(1) P=i(Q—C +1). 
(see [1], p. 239, also [3,1], p. 262, (2)). Let m be the total number of 

independent generators and p the number of parabolic generators of G; let v 

be the number of independent defining relations satisfied by the generators 

of G. Furthermore, let n be the number of cycles of R, corresponding to 

fixed points, » the number of remaining cycles (corresponding to “ accidental ” 

corners). Then nv - p and the following relations hold (see [3, I], p. 170 

and p. 262): 

(2) (3) 

2. Let IT be the group of nonhomogeneous modular transformations. 

Its elements are the matrices ‘4 AY where the integers a,b,c,d satisfy 

—c —d 
ad — bc and where we consider and ( 

elements. I admits the system of generators S = and 7’ = 

3. For every prime number p we define the subgroups I,(p) of TI by 

the additional condition c= 0 (mod p). These subgroups have been studied 

by H. Rademacher [5], who showed that, if the square brackets stand for 

* Received June 14, 1950; in revised form May 23, 1951. 
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the greatest integer function and the round brackets are Legendre symbols, 

then, for p >3, 

is generated by m= 2[p/12]-+ 3 independent generators, 

satisfying v= 2-+ (—1/p) + (—3/p) defining relations; 

one of the generators of Ty(p) is S?, the others are of the form 

—k, —1 
(5. ), with 

kk, + 1=0 (mod p), l<kky << p—l. 

From (4) follows immediately the following 

Lemma. Tor every p, To(p) has exactly one parabolic generator. 

Proof. S* is parabolic for every p. For p=2 and p=83, we verify 

directly that V, —( 9 3 respectively, are not 

parabolic. If p > 3 and V;, is parabolic, it follows (see [1], p. 21) successively, 

by (4), that k-—k, = +2, or k?— kk, = + 2k, so that 1)? =0 

(mod p), contrary to (4), proving the lemma. 

With the indicated values of m and », it follows from (2), (8) and 

the lemma, that Q = 2[p/12] + 3 and n= {2 + (—1/p) + (—3/p)} +1. 

In the case of groups of modular transformations, » —1 (see [3,I], p. 262 

and 319) so that (1) becomes P = [p/12] —4{(—1/p) + (—3/p)}. 

Observing that the large bracket is a periodic function (mod 12) of p, we 

can write the last relation also as P = [p/12] + r(r? — 25)/24, where 

r=p (mod 12), |r| <5. 

4. The subgroups Ty°(p) are defined, by adding to the previous condition 

c = 0 (mod p), the new condition b==0 (modp). For p> 3, the values of 

m, v and p are respectively (see [4]), m—2[(p+ 2) (p—1)/12] + 3, 

v==2-+ (—1/p) + (—3/p) and p=3. Substituting these values in (2) 

and (3) we obtain from (1), P = [(p + 2)(p —1)/12] —1 + r(r? — 25) /24, 

where r is defined as before. 

5. The principal subgroups ['(p) are defined, by adding to the definition 

of T,°(p) the further conditions a=d=1(modp). Their structure has 

been studied by H. Frasch [2] and J. Nielsen [6]. H. Frasch showed that, 

for p> 3, I'(p) is generated as a free group by m = p(p?—1)/12+1 

independent generators; one of them is S?, the others depend on three 

parameters. The fundamental region R’, to which Frasch’s generators 
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correspond, is not simply connected; therefore, we cannot apply (1), (2) 

and (3) directly, but have first to transform RF’ into a simply connected 

fundamental region RF. In this transformation, the number of sides does 

not change, so that Q = m = p(p?—1)/12 +1. Furthermore, ['(p) being 

a free group, it contains no elements of finite order. Consequently, the only 

cycles of R are those corresponding to transforms of S. As the index of 

T(p) in T is —=4p(p?—1) and S*eT(p) if, and only if p|A, it follows 

(see [2], p. 248) that C—j/p—4(p?—1). From (1) follows now the 

(well known) value 

P =3{p(p? —1)/12 +1—3(p?—1) + 1} = (p?— 1) (p— 6) /24+1. 

6. So far we have considered only the cases p>3. If p=—2, or 3, 

a direct examination yields the well-known result, that the genera of To(p), 

Ty°(p) and I'(p) are all zero. 

UNIVERSITY OF SASKATCHEWAN. 
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CYCLOTOMY AND JACOBSTHAL SUMS.* 

By ALBERT LEoN WHITEMAN. 

1. Introduction. Let p be an odd prime and e be a divisor of p—1. 

The Jacobsthal sum ¢,(n) is defined by 

where the symbol (h/p) denotes the quadratic character of h with respect 

to p. In [5] Jacobsthal studied ¢2(n) and deduced an interesting application 

in connection with the representation of a prime p of the form 4m + 1 as the 

sum of two squares. Later writers [2], [6], [7], [9] obtained analogous 

results for other values of e. These results exhibit a connection between the 

Jacobsthal sum and a partition of p into quadratic summands. This connec- 

tion is made precise in Theorem 1 of the present paper ($4). The first part 

of the paper (§§ 2-4) contains an account of the arithmetic properties of the 

sum ¢,-(n) and the related sum y(n) defined in §3. There is given in § 5 

a result which expresses the Jacobsthal sum in terms of a certain cyclotomic 

function. Finally the remainder of the paper (§§ 6-9) contains numerous 

applications. 

2. The Jacobsthal sum. Let g be a fixed primitive root of p and write 

p—l1=ef. Assume first that n in (1.1) is divisible by p. Then we see 

that ¢-(n) = 0 or p—1 according as e is even or odd. Next let n be prime 

to p, so that n is congruent to a power gy”, m=0,1,---, p—2, of the 

primitive root g. From the definition it is clear that the value of ¢.(g™) 

depends upon the primitive root g employed except when m0. We now 

show that ¢7.(g”) = ¢7.(g™) if m=m’ (mode). This result is included 

in the formula 

(2.1) = (— 1)" 

where OS ¢=f—1, 0SkSe—1. To prove (2.1) let h denote any 

solution of the congruence hh==1 (modp). Then we have 

* Received July 18, 1950. 
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A formula closely related to (2.1) is 

(2. 2) = (x/p)**pe(n) (pf 2). 

This may be directly established. 

Suppose now that f is odd. Then e must be even. Since e is a divisor 

of p — 1, we may select x in (2. 2) so that x belongs to the exponent e (mod p). 

Then employing Euler’s criterion, we get (4/p) =a@-D/? = (r°/?)f == (—1)? 

==—1(modp). Hence in this case ¢.(n) =—¢e(n). We have therefore 

proved 

(2. 3) —0 (f oda). 
We next prove that 

(2. 4) ge(n) =0 (mod e) (f even). 

The congruence h®° =1 (mod p) has e incongruent roots since e is a divisor 

of p—1. Let 7 belong to the exponent e (mod p). Then for a fixed value 

of x not divisible by p, the e roots of the congruence h® =-2* (mod p) are 

given by hi=r‘z (mod p), 1=0,1,---,e—1. Now for f even we have 

(r/p) =r-/? — (re) t/? =1 (mod Hence (hi/p) = (x/p). We may 

now deduce (2.4) at once from (1.1). 

Finally we establish the congruence 

[(e-1)/2] (p-1)/2 

(2.5) de(n) =— (mod p) (f even). 

Since f is even, p—1 is divisible by 2e. Using (1.1) and Euler’s criterion 

we expand (h*! + nh)®/? by the binomial theorem and interchange signs 

of summation; the result is 

be(n) = = j@-1)/2+e0 (mod p). 

h=1 

In order to complete the proof we make use of the formula 

(s =0 (mod p—1)), 

iret 0 (mod p) (s 40 (mod p—1)), 

and note that (p—1)/2-+ ev is divisible by p—1 if and only if ev is an 

odd multiple of (p—1)/2. 

8. Thesum ¥,(nm). Related to the Jacobsthal sum ¢.(n) is the sum 

we(n) defined as follows: 

| 

( 

| 

| 

| 

| 

| 
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If n is divisible by p we have immediately y-(n) = p—1 or 0 according as 

e is even or odd. 

For e = 2 we have the following formula 

(3. 2) = p—1— (n/p) — (n/p)’p, 

where the symbol (n/p) is defined as 0 when n is divisible by p. Formula 

(3. 2) is well-known and may be proved without much difficulty. Note that 

W2(n) is equal to p— 1 when n is divisible by p and is equal to — 1 — (n/p) 

otherwise. 

In the sequel we shall encounter the sum 

_ ax? + br +c (3.3) f(a, b,c) (pta), 
for which we have the relation 

(3. 4) f(a, b, Cc) — (c/p) + (—aD/p) + (a/p)p2(— D) 

(D = b? — 4ac). 

The following two formulas are analogous to (2.1) and (2.2) and are 

proved in much the same way. 

(3. 6) = (x/p)pe(n) (pt 2). 
We may also establish the following formulas: 

(— 1)**"$e(9°*) (e even), 
3.7 e(g*) = 

(3. 8) Ye(g") = (—1)"fe(9**) (e even), 

for 0=k=e—1. For example, (3.7) follows from 

EGY (CF) 
A formula of a different nature is 

(3. 9) he(n) + Ye(m) = Yoe(m) (f even). 

This may be proved by summing in (1.1) and (3.1) first with respect to 

the quadratic residues of p and then with respect to the quadratic non-residues. 

Note that since f is even, p—1 is divisible by 2e. 

Finally we shall prove the following congruences for 0k [Se—1. 
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__ § e(mod 2e) (f even, k —0 or f odd, ke/2), 
=| 0(mod 2e) (f even, k~0 or f odd, k= e/2). 

To establish (3.10) we write y¥e(g*) in the form eA — eB, where eA is the 

number of times that the symbol ((h* + g*)/p) takes on the value 1 and eB 

is the number of times that it takes on the value —1. On the other hand 

eA-+eB is equal to p—1—e or p—1 according as the congruence 

he + g*=0 (mod p), 1=AZS=p—1, does or does not have solutions. 

Since g(¢?)/? — g@)/? ==—-1 (mod p), we may write this congruence in the 

form h* = g‘f?/2+* mod p). For f even the last congruence has solutions if 

and only if k = 0; for f odd it has solutions if and only if k= e/2. Elimi- 

nating B by addition we get for OS k=e—1 

(f even, or f odd, k —e/2), 
(3.11) Ye(9*) -} —p+1+2¢cA (f even, k0 or f odd, k~e/2), 

from which (3.10) may easily be derived. 

4, The main results. We first prove 

e-1 

(4. 1) ¢e(g*) =— (e odd). 
k=0 

To prove this we make use of (2.1) with e odd. Thus we get 

f-1 e-1 p-2 

k=0 t=0 k=0 m=0 

p-1 

—— (p—1) +E 46(a) (p—1). 
Equation (4.1) follows immediately. 

We now state our principal result. 

THEOREM 1. Let s be a fixed integer such that 0OSsSe—1. If ets 

odd then 

(4. 2) 2 e(9 )be(g***) -{ (s+£0). 

If e is even and f ts even then 

To prove this theorem let § denote the left member of (4.2) or (4.3). 
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It should be noted that when f is odd each term of § is equal to zero in 

view of (2.3). We get by (1.1) and (2.1) 

f-1 e-1 

t=0 k=0 

p-2 

& $o(9") bo(9""*) 

(=\(2) +- (x°g8 + y’)g™ + 

P P m=0 P 

where f(a,b,c) is defined in (3.3). Making use of (3.2) and (3.4) this 

becomes 

p-1 

If s40 the right member of the last equation reduces to — > (ry/p)°*", 
@,y=1 

which is equal to 0 if e is even and is equal to — (p—1)? if e is odd. If 

s = 0 we note that for a fixed value of x the value of the symbol ((y* — x°)/p)? 

is equal to 0 if y°==2z* (mod p) and is equal to 1 otherwise. In the proof 

of formula (2.4) we showed that when f is even the e roots of the congruence 

y° =2° (mod p) are given by y4,=r‘z (mod p), —0,1,- - -,e—1, where 

r belongs to the exponent e (mod p) and (r/p) =1. Hence 

Combining our results we obtain Theorem 1. 

The method of this section may be used to derive corresponding results 

for the sum y(n). Thus we get for e even or odd 

(4.4) (—1)"ve(gt) 
k=0 

which is analogous to (4.1). We may also prove 

THEOREM 2. Let s be a fixed integer such that OSsSe—1. If e 

is even then 

e-1 

= 
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e*p — 2e(p—1) (s=0), 

(4.5) — 4 —2e(p—1) (s even, 
0 (s odd). 

If e 1s odd then 

a — e(p—1) (s=0), 
(4. 6) 2 = 4 —e(p—1) (s even, s #0), 

e(p—1) (s odd). 

5. Cyclotomy. The cyclotomic number (h,k) is the number of values 

of p—2, for which 

(5.1) 1+y=g" (mod p), 

where the values of s and ¢ are each selected from the integers 0,1,- - -,f—1. 

Noting that g°f=1 (mod p) we may easily infer that 

(5. 2) (h, k) (h + av, k + be), 
for any integers a and b. Furthermore it is not difficult to prove that 

(e—h,k—h) (f even or odd), 

(5. 3) (h, k) = (k, h) (f even), 

(k + ¢/2,h + ¢/2) (f odd), 
and 

For a proof of (5.3) and (5.4) see, for example, Bachmann [1; Chapter 15]. 

We now consider the sum 

(5. 5) B(v, - (h,v—nh). 

This sum is equal to the number of values of y, 1 = y= p—1, for which 

y"(1+-y) is congruent to a number of the form z°g’(p fx) with respect to 

the modulus p. Hence the number of solutions of the congruence 

(5. 6) y"** + y" = (mod p) (v fixed; 0S2,ySp—1), 

is equal to 2+ eB(v,n). For a fixed integer a let F,(a) denote the number 

of values of y, 1S yS p—1, for which y™*+ y"=a(modp). In terms 

of the functions /’,(a) the number of solutions of the congruence (5.6) is 
p-1 

equal to S| F,,(x°g’). Combining our results we conclude that 
z=0 
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p-1 

(5. 7) > =2 + eB(v, n). 

The case m —1 is an important special case. We may easily show that 

+ 
so that (5.7) becomes 

p-1 1 

The last equation leads at once to 

p—1-+ (e odd), 
p—1-+ (e even), 

where ¢-(”) and we(n) are defined by (2.1) and (3.1), respectively. 

(5. 8) eB(v,1) = } 

6. Thecasee—2. As a first application let e—2 and f be even, 

so that p=1(mod4). In this case the second member of (4.3) reduces to 

the identity p =a? + b?, where 

(6.1) a= $2(1)/2, b = $2(g)/2. 

Next using (3.2), (3.9) with e—2 and (3.10) with e—4 we get 

(6. 2) a=—1 (mod 4). 

Formulas (6.1) and (6.2) constitute the theorem of Jacobsthal [5]. 

Applying (2.5) we obtain at once 

(6. 3) (mod p). 

Formula (6.3) is a theorem of Gauss [3]. 

Again using (3.2) and (3.9) with e=—2 we get 

(6. 4) a= + 2)/2, b= (9)/2. 

Formula (6.4) is a theorem of Chowla [2; Theorem 1]. It may be remarked 

that (6.4) may also be deduced directly from (3.8), (4.4) and (4.5). 

7%. Thecasee=3. If p=—3f-+1 the diophantine equation 4p = 2? 

+ 3y? has three solutions in positive integers x and y. By (4.1) and (4. 2) 

we get the equations 

95 
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(7.1) $s(1) + + $3(9?) =— 3, 3°(1) + $3°(g) + $37(9?) = 6p 4+ 38, 

which may readily be transformed into the three identities 

We now prove that the three solutions of 4p = x + 3y? given by (7.2) are 

distinct. For this purpose it suffices to show that 

If 1+ ¢3(9') =1-+ ¢3(g/) then equations (7.1) lead to the absurd con- 

clusion that (1 + ¢3(g‘))* =p. If1+ ¢3(g‘) =— (1+ ¢3(g/)) then the 

first equation in (7.1) implies that 1 + =0 for k~1,k-j. Hence 

by (%.2) we deduce 3|4p, which is impossible. 

The diophantine equation 4p —c* + 3d? has a unique solution with 

c¢=1(mod3) and d=0(mod3). This solution is given by 

(7. 3) c—1+ d = ($3(49) — $3(49*) )/3. 

To prove (7.3) we note that the congruence c= 1 (mod 3) follows at once 

from (2.4). Next using (5.2), (5.3), (5.5) and (5.8) we get 

$3(49) =—p+1+9(0,1), =—p+1-+ 9(0,2), 

so that d=0(mod3). Formula (7.3) is the theorem of von Schrutka [7]. 

Applying (2.5) we obtain 

(7. 4) =—(7) (mod p). 

Formula (7.4) is due to Jacobi [4]. 

By (3.5), (3.7) and (3.9) with e=—3 we get 

2o3(1) = yo(1), $3(9) —$3(9°) 

so that for 10, (7.2) reduces to the identity p = s? + 3¢?, where 

(7. 5) (vo(1) +2)/4, t—=Yo(g)/6. 
and the sign of s is determined by means of the congruence 

(7. 6) s=—1 (mod 3), 

because of (3.10) with e—6. We have also by (2.5) 

(7%. 7) — (1) (mod p). 

V 

a 

| 
1+ $3(9°) A+(1 + I 

| 

( 

C 

( 
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Formulas (7. 5) and (7.6) comprise a theorem due to Chowla [2 ; Theorem 2]. 

We remark that (7.5) may also be deduced directly from (3.8), (4.4) 

and (4.5). 

8. The casee—4. In this section we consider the case e—4 and 

f is even, so that p==1 (mod 8). By (3.7) and (3.8) we get 

= $4(9°), + + + $4°(9") = 16p. 

Hence we have the identity p= 2? + 2y?, where 

(8. 1) $4(1)/4, y = $4(9)/4. 

For another proof of (8.1) see a recent paper [9; Theorem 2]. 

The sign of x in (8.1) is determined by means of the congruence 

(8. 2) == (mod 4). 

To prove (8.2) we return to (3.11) and obtain the equation 

ys(1) =—p+5+84, 

where 4A denotes the number of times that the symbol ((h*+1)/p), 

h =1,2,--+,p—1, takes on the value 1. We next prove that A is an 

odd integer. Put h =g* (mod p), k=0,1,---,p—2. For k—f/2, 3f/2, 

5f/2, Vf/2 we get ((g%*+1)/p)=0. For k=0, f, 2f, 3f we get 

((9** +1)/p) = (2/p) =1. For k=1,2,---, f/2—1, f/2+1,-°-, 

f—1 group the k’s in pairs so that f/2 —j, f/2 +7, 7=1,2,---,f/2—1 

form a pair. Since 

(8.3) (14 (1 = 4 (mod p), 

it follows that the two factors in the left member of (8.3) have the same 

quadratic character. Therefore the number of values of k, k=0,1,---, 

f—1, for which ((g**+1)/p) is equal to 1 is 2¢g-+ 1 for some integer q. 

Furthermore g*‘//?*))==g*(f/*+4f-3) (mod p) for any integer a. Hence A = 2q + 1. 

This, in turn, leads to the congruence y,(1) = (—1)*/**" 4 (mod 16). Using 

(3.9) with e—4 and (3.10) with e=8 we may now deduce (8. 2). 

Applying (2.5) we get easily 

Formula (8.4) is a theorem of Stern [8]. 

(8. 4) 22 

7 
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9. The case e = 5. For a prime p~5df+1, f is even. By (4.1) 

and (4.2) we have the identities 

¢5(g*) =— 5, = $5°(g*) = 20p + 5, 
k=0 k=0 

(9. 1) 

p> $s (9*)s(g***) 2 $5(9*) $s (9***) =— 5(p—1). 

After some manipulation we may transform the identities in (9.1) into the 

identities 

16p = A,? + 5B,?2 + 100,2 + 10D,2 (k = 0, 1, 2, 3, 4), 
(9. 2) 

A,B, = C;? — — D,?, 

where 

(9. 3) 

= — $5(g***), = — 

Another pair of identities is 

(9.4) 16p—2?+ 50u? + 50v? + 125w, rw = v? — 4w — uv’, 

where 

t=1-+ ¢$5(4), 

25u = $5(49) + 265(49°) — 26s (49°) — $5 (49%), 

25u = 25(49) — $5(49°) + $5(49°) — 2¢5(49*), 

25w = $5(49) — o5(49°) — $5(49°) + $5(49*), 

and the sign of z is determined by means of the congruence s=1 (mod 5) 

(9. 5) 

in view of (2.4). 

The formula for z is due to Emma Lehmer [6]. To prove (9.4) select 

k in (9.3) so that g*==4(modp). Making use of the formulas in § 5 we 

may express wu, v and w defined in (9.5) in terms of the cyclotomic numbers 

(h,k). Dropping subscripts in (9.3) we arrive at the equations 

25u = 100 + 5D = 25[ (0, 2) — (0, 3)], 

25v = — 50 + 10D = 25[ (0, 1) — (0, 4)], 
25w = 5B = 25[ (1, 3) — (1, 2)]. 

Hence A =z, B = 5w, C = 2u—v, D=u-+ 2v and (9. 2) reduces to (9. 4} 
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INFINITELY NEAR POINTS ON ALGEBRAIC SURFACES.* 

By Gino TuRRIN.? 

1. Infinitely near points on plane algebraic curves were introduced by 

Max Noether [1] in the process of reduction of singularities. Noether’s 

classical theorem is: a sequence of singular infinitely near points on a plane 

algebraic curve is necessarily finite. In the case of space curves and surfaces 

the first definitions and results were established by C. Segre [2] using 

quadratic transformations of the ambient space. Noether’s result, though 

it remains valid for space curves, is no longer true for surfaces because of 

the appearance of singular curves. 

As a general rule, and even in the simplest case of plane algebraic 

curves, the analysis of infinitely near points is intricate and all proofs have 

to be carried out by handling a great number of details.2 In the case of 

algebraic surfaces B. Levi [3] proved the following theorem: if P, P,, P2,- - - 

is an infinite sequence of infinitely near points on an algebraic surface and 

all of the same multiplicity v >1, then for any gwen p there exists q > p 

such that the point P, lies on the transform of a v-fold curve passing through 

the point Po, immediately preceding P,. It is the purpose of this note to 

give a purely algebraic proof of Levi’s theorem for arbitrary ground fields 

of characteristic zero. Our proof makes use of related results proved in the 

fundamental paper of Zariski [7] and it goes further by showing the existence 

of an index p such that for any q > p the point P, lies on a v-fold curve. 

2. <A trivial case of an infinite sequence of infinitely near points which 

all have the same multiplicity vy > 1 is one in which there exists an index p 

such that the point P, lies on a v-fold curve I, and all the points sucessive 

to P, lie on the corresponding transforms of the curve T,. A sequence of 

this sort will be called a trivial sequence. 

We shall need the following remark: Let P be a point of a surface F 

and let T be a quadratic transformation of cenier P which sends F into a 

surface F, and the fundamental point P into the curve A=T[P] of F. 

* Received October 5, 1950. 

1 Fellow of the Rockefeller Foundation. 

* See for example [5] or [6], chap. 1. 
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If T, is an irreducible curve of F, not contained as component in A and 

such that T, (| A=<0, then T, is the transform T[T] of an irreducible curve 

T of F passing through P and YT, has for F, the same multiplicity as T has 

for F. This is immediate: since P is the only fundamental point of the 

transformation 7 and since I, is not a component of A=T[P] it follows 

that T, is the transform T[T] of an irreducible curve I of the surface F. 

Since under the inverse transformation 7-' to any point of A corresponds 

the point P and since T, {| A460 we conclude that [ contains the point P. 

Finally, the respective multiplicities of T and T, are the same since the 

quadratic transformation T is regular at a general point of the curve I. 

8. Our result is as follows: 

Let P2,- be an infinite sequence of infinitely near 

points all of the same multiplicity v > 1 on an irreducible algebraic surface F 

defined over an arbitrary grownd field of characteristic zero. Then there 

exists an index p such that for any qg>p the point Pg lies on at least one 

irreducible curve Ty which 1s v-fold for the surface Fg containing Py. The 

curve T, either a) coincides with the transform Tq1[Pq1] of the point Py. 

under the quadratic transformation T9g1: Fgs1—>Fq or b) ts the transform 

Tq-1[Tq-1] of some curve Ty, passing through Py, and v-fold for the surface 

Fq1. Case b) must occur infinitely many times. 

Proof. A given sequence P, P;, P:,- - - of points infinitely near to P 

on the surface /’ determines at least one valuation v of the field of algebraic 

functions of which the birationally equivalent surfaces F’, F,,F'2,--- are 

distinct projective models. If the given infinite sequence P, P;, P2,:- - is a 

trivial sequence the Theorem is obviously true. ‘Therefore we assume that 

the sequence P, P,, P2,-- + 1s not trivial and all the points have the same 

multiplicity v > 1. Zariski [7] has proved that under these conditions the 

valuation v must be 0-dimensional non-discrete of rank one and that more- 

over, after a finite number of quadratic transformations, the element ; which 

defines the surface F; in the quotient ring % of the point P; with respect to 

the 3-dimensional ambient space of /; can be written in the following form: 

(we may assume that P; =P and F;=—F are the initial point and surface 

respectively ) 

wo = E92” + > €j2? (1) 
j=l 

where the «;, 0 = j Sy, are either zero or units of the quotient ring (but 

€) ~0) and where z, 2, y is a set of uniformizing parameters of the point P 
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at 3. Since the point P = (0,0,0) is of multiplicity v for the surface F 

the exponents which appear in (1) must satisfy the inequalities mo; + oj = }, 

for all 7540 such that «,s40. Furthermore, loc. cit. Lemma 11.4, the 

leading form of the element is the v-th power of a linear form. Taking 

into account this fact and the expression (1) we shall obtain the stronger 

inequalities 

+ > J (2) 

for all 740 such that 0. For let = + + a,Z)” be the leading 

form of w where 4,42, a, are elements of the residue field R of P, Z, ¥, Z are 

algebraically independent transcendentals over ®, and where a, 0 since 

«0. If, say, ag 40 then necessarily a; = 0 since otherwise the expression 

of 2 as a sum of monomials would contain (v-+1)(v+2)/2 (>v+1) 

terms contradicting the expression (1) foro. Thus we may assume dj, ad, ~ 0 

and a, 0. Now the expression for 2 as a sum of monomials has exactly 

v-+1terms. This implies in (1) that all ¢; are different from zero and also 

that the total degree in the uniformizing parameters of each monomial of o 

is exactly v. Since < does not occur in &, the expression (1) for w takes 

the form = ey’. Let a, and a, be elements of 3 

whose residues coincide with a, and az respectively. Then the leading form 

of the element w’ = (a2 -+ ay)” coincides with 2 and since the quotient 

ring 3 of the point P with respect to the ambient 3-dimensional space is a 

regular local ring we conclude that »—w’. This contradicts the fact that 

F is an irreducible surface. Hence necessarily also a; = 0, i.e., & = (a,2)’ 

which, by definition of the leading form, shows the validity of the inequalities 

(2) for the expression (1). 

We point out that the expression (1) together with conditions (2) is 

permanent in the sense that all the elements w; which succeed » when the 

successive quadratic transformations are performed have expressions similar 

to (1) in which the corresponding conditions analogous to (2) hold. In 

order to write the local equations of the quadratic transformation 7 which 

sends the surface F’ defined in 3 by » into the surface F, defined in 3, by «1, 

and thus to obtain for w, the expression similar to (1) in terms of the 

uniformizing parameters 2, ¥:, 2, of the point P;, we must distinguish three 

cases according to the ratio of the values assigned to y and a by the fixed 

valuation v: 

Case 1. v(x) < v(y). The local equations of T are: 

2, = 2/2, = 9/2, (4. 1) 
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consequently 
v 

wy = = + (1.1) 
j=1 

where 

= Mj + —J, Noj (3. 1) 

and where the conditions similar to (2) are 

Mij + > (2.1) 

Case 2. v(x) —=v(y). Since the valuation v has center in all the 

quotient rings %, in particular in %:, the element y/z is a unit in , and 

we have: 

2/2, 9:1 =f (y/2), (4. 2) 

where f(y/z) is a suitable polynomial in y/z with coefficients in %.* 

v 

= 0/2” = + DY Ez," (1. 2) 

where €; =; (y/x)" is clearly a unit in %, (if 40) and where 

(14; = 0) (3. 2) = ++ Noj — J; 
and 

M1; > J. (2. 2) 

Case 3. v(x) >v(y). In this case we have: 

2, = 2/Yy, =Y; 2/Y, (4. 3) 

v 

Oo; = w/y” = € , (1. 3) 

g=1 

= Moj, = Noj + — J; (3. 3) 

and as usual 

mj + > (2. 3) 

It follows from (1), (2) and (4.s) (s=1,2,3) that the curve 

A=T{[P] which corresponds on the surface F, to the fundamental point 

P = (0,0,0) is irreducible and is given in the quotient ring 3, of P, by 

the ideal (z:,z,) in cases 1 and 2, and by the ideal (2,,y4,) in case 3. We 

shall also make use of the fact that in case 3 the curve given in %, by the 

%If the ground field is algebraically closed f(y/x) = y/x—c, where c is the v- 

residue of y/z. 
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ideal (z:,2%,) is merely the transform of the curve which passes through the 

point P = (0,0,0) and is given in & by the ideal (2,2). 

With reference to the first part of the Theorem we observe first of all 

that given any index p there exists g > p such that the point Py ts not 

isolated.* In fact, our hypothesis that P, Pi, P2,- - - is a non-trivial sequence 

of points all of the same multiplicity v > 1 implies that the local uniformiza- 

tion of the 0-dimensional valuation v ([7] Theorem 5) cannot be performed 

by using quadratic transformations only. Since the process of uniformization 

of v is carried out by a finite number of quadratic and monoidal trans- 

formations and since monoidal transformations come into play only when 

some intermediate point P; is not isolated, our assertion follows. Therefore 

we may asume that in the surface /’ given by (1) there is a v-fold curve 

passing through the point P = (0,0,0). Moreover, we may assume that the 

v-fold curve is given in the quotient ring 3 of P by the ideal (z,x). For 

if no point after P is isolated the first part of the Theorem is already proved. 

Otherwise since we have just shown that in our given infinite sequence of 

points there exists an infinite number of points which are not isolated, we 

may suppose for a moment that the point P is isolated and that P, is not 

isolated. By the remark of §2 the v-fold curve through P, must coincide 

with the transform A = T[P] of the point P. Now, we have seen above that 

A is given in the quotient ring , of P, either by the ideal (2:,2,) (cases 1 

and 2) or by the ideal (2:,4:) (case 3). Hence, by setting again P, = P 

and interchanging, if necessary, the notation for the two uniformizing para- 

meters x and y, we prove the assertion. Therefore we assume that in the 

surface given by (1) the curve defined in the quotient ring 3 by the ideal 

(z,x) is v-fold for F. This is equivalent to saying that in (1) the following 

additional conditions to (2) hold: 

Moj = (2’) 
for all 740 such that ¢; 40. Once all the above assumptions are made 

the first part of the Theorem would be proved when it is shown that no 

matter which case (1, 2 or 3) occurs, then in the corresponding expression for 

w, we necessarily have my; =j for all j ~0 such that «0. This is given 

by (2.2) in case 2 and is an obvious consequence of (2’) and the first part 

of (3.3) in case 3. To prove the assertion for case 1 we need the following 

general remark applicable to the expression (1): for no 740 such that 

€; 0 can it happen that 

(A) myjy<j (B) tj <j 

“A »v-fold point P is isolated if no curve of the surface passing through P is »-fold. 
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simultaneously. For whatever case 1, 2 or 3 occurs as the next step, it is 

clear from (A), (B) and (3.8) (s=1,2,3) that 

Moj Nog > Miz Mj 

and that again, using once more (A), (B) and (3.8), we have simul- 

taneously 

(Ai) my <j (Bi) mj 

Thus we should get an infinite strictly decreasing sequence of inequalities 

Moj + Nog > + My > Mo; + 

contradicting the generally valid inequalities similar to (2). Now, if in 

(3.1) we had, for some 7=£0 for which ¢ ~0, my <j it would follow 

from (2’) and (3.1) also that n.;< 7. This we have seen to be impossible 

and hence also in case 1 we must necessarily have m,;=j7 for all 7 0 such 

that ¢;>40. This completes the proof of the first part of the Theorem. The 

second part of the Theorem is evident from the remark of § 2 and together 

with the first part represents our improvement of Levi’s result in the sense 

that there exists a certain point in the sequence such that all its successors are 

non-isolated and the v-fold curves which appear through the points are of a 

certain well determined type. 

To prove the last part of the Theorem we shall now show that, given 

an index p there exists q > p such that the point Py lies on the transform 

of a v-fold curve passing through Pz... Hicturning to the expression (1) and 

under the assumption (2’), i.e., the condition that the curve defined by the 

ideal (z,2) is v-fold for the surface /’, we shall consider the order of con- 

secutive appearance of the three cases 1, 2 and 3. We have just shown in 

the proof of the first part of the Theorem that, independently of the different 

cases, the curve of the surface F, given by the ideal (2,,2,) is v-fold. If 

case 3 occurs infinitely many times our assertion is proved since the curve 

given by the ideal (2:,2,) is in that case the transform of the v-fold curve 

given by the ideal (z,7). Now, case 2 cannot take place infinitely many 

times consecutively since by (3.2) the exponents of the successive parameters 

z; decrease strictly. It is also clear from (1.2) that case 2 or case 3 are the 

only ones which can occur immediately after case 2. Therefore it remains 

only to show that case 1 cannot appear infinitely many times consecutively. 

This is seen as follows: if case 1 occurs 7 times consecutively (see (4.1)) the 

values of the parameters are related in the following form; 0 < v(2;) = v(z) 

and 0 < v(yi) =v(y) —tw(zx). Since v is of rank one v(z) and v(y) may 

be supposed to be real numbers. Hence 1 < v(y)/v(z). This completes the 

proof of the Theorem. 
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4. It is well known by construction of examples that there exist infinite 

sequences of infinitely near points on an algebraic surface all of the same 

multipilicty which are not trivial sequences; see [4] or [6], p. 15. Recently 

Derwidué*® has made a new attempt at a purely geometric proof of the 

theorem of reduction of singularities of an algebraic surface by using 

Cremona transformations of the ambient 3-space. The proof makes use of a 

statement concerning the behaviour of the base points of the polar curves 

and it is asserted that from that statement the following result attributed 

to B. Levi follows as a simple corollary: an infinite sequence of infinitely 

near singular points on an algebraic surface is necessarily a trivial sequence. 

As we have just shown above this assertion is neither true nor does it represent 

B. Levi’s theorem. The procedure follows the classical approach of elimi- 

nating the isolated singularities and further reducing the multiple curves 

but fails to show the true fact that the alternate process of: a) reduction 

of singular curves, }) elimination of the isolated singularities introduced by 

a), a,) reduction of the singular curves introduced by b), etc. is necessarily 

finite. 
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SOME EXAMPLES IN THE THEORY OF SINGULAR BOUNDARY 

VALUE PROBLEMS.* 

By Puitip HartTMan.** 

1. The theorems. Let g(t), where 0=¢ <o, be a real-valued, con- 

tinuous function and d be a real parameter. Let N(T,A) denote the number 

of zeros on 0 < ¢ < T of a solution x = r(t) = x(t, A) #0 of the differential 

equation 

(1) + (q+r)r—=0. 

Thus, up to an additive correction —1, 0 or +1 (depending on T), the 

number NV(7',A) is independent of the particular solution x —2z(t) of (1) 

determining it. For example, if g(t) =0, then, as T—- 0, 

(2) N(T,A)=O(1) ifAS0; (T,A) + 0(1) if A>0. 

The asymptotic behavior, as To, of N(T,A) can depend in a very com- 

plicated manner on X, even for simple functions g(t). To illustrate this, 

let g(t) be a periodic function, say g(t) — cost; the solution of the problem 

of the asymptotic behavior of N (7,2) furnishes the solution of the problem 

of the determination of the A-values for which (1) has periodic or half-periodic 

solutions. Thus, in general, one cannot expect a solution as simple as (2). 

Nevertheless, it seems surprising that the situation can be as pathological as 

indicated by the following theorem: 

(*) Let p=w(T) be a positive, continuous, non-decreasing function 

for0<T<o. Then there exist real-valued, continuous functions q = q(t) 

for 0St realizing each of the following situations, as T 

(3) N(T,A=O(1) if A<0; N(T,A) = + O(1) ifA > 0, 

(4) N(T,A)=v(T) + O(1) for all A, 

(5) N(T,r) = 2y(T) + O(1) ifa>0. 
It is curious that y can tend slowly or rapidly to «o with 7, while the 

* Received January 23, 1951. 

** John Simon Guggenheim Memorial Foundation Fellow, on leave of absence from 

The Johns Hopkins University. 
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right-hand sides of the asymptotic formulae in (3), (4), (5) are essentially 

independent of A. The contrast furnished by (2) is indeed great. 

Remark on X=0. In the examples, constructed below for the cases (3) 

and (5) of (*), the number A = 0 satisfies the second relation in (3) and (5), 

respectively; that is, as T—->0, 

(3 bis) N(T,0) =y(T) + 0(1), 
(5 bis) N(T, 0) =2y(7) + O(1). 

But it turns out that any situation consistent with Sturm’s comparison 

theorem can be realized. Thus, if ¢(7') is any positive, continuous, non- 

decreasing function for 0 < T satisfying ¢(T2) —¢(T1) SW(T2) 

for 0 <7, <T2 then examples q(t) realizing (3) or (5), respectively, 

can be chosen so that 

(30) N(T,0) = + O(T) 
or 

(50) N(T,0) = + ¥(T) + O(T). 

A modification of the proof of (*) yields: 

(**) Let S be a closed set on the r-axis. There exist real-valued, 

continuous functions g= q(t) on 0St<o@ such that, for every pair of 

numbers p, the difference N(T,») —N(T,2) is unbounded or bounded, 

as T >, according as the open interval (A, ) contains points of S or the 

closed interval [A, 4] does not contain points of 8. 

Remark. If S is unbounded from below, then N(T,A) 0, as T->0, 

for every A. If S is bounded from below, then examples q(t), proving (**), 

can be chosen so that each of the following alternatives is realized: as T >, 

N(T,’) — for every A or N(T,A) = O(1) if A is less than every number 

in 8. 

The proofs of (*) and (**) will make it clear that the “ pathology ” in 

the examples is not associated with the local smoothness of q(t). In fact, 

(*) and (**) remain true if the phrase “continuous functions q(t)” is 

replaced by “functions q(t) of class C*.” 

The theorem (*) furnishes the solution to the problem, suggested to me 

by Professor Wintner, of characterizing the monotone functions y(7') corre- 

sponding to which there exist differential equations (1) satisfying, as T >, 

N(T,A) =O(1) if A <0 and N(T,A) =o(y(T)) if A> 0; cf. (3). The 
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theorems (*) and (**) also make it possible to answer some questions, raised 

by him, concerning the possible structure of the spectra of differential operators 

(e. g., the question whether the tacit assumption, made by various writers, 

that the spectrum in the completely continuous case clusters only at oo, and 

not at —oo as well, is not a mistaken one). The answers to these questions 

are contained in some of the corollaries of the following section. 

2. Consequences for the spectral theory of (1). The differential equa- 

tion (1), for a fixed d, is said to be oscillatory or non-oscillatory according as 

every solution of (1) does or does not have an infinity of zeros. The differ- 

ential equation (1) is said to be of limit-circle or limit-point type according 

as (1) does or does not have two linearly independent solutions of class 

L*(0, 0); the type of (1) is independent of A; [9], p. 238. In the limit- 

point case, (1) and a linear homogeneous boundary condition at t = 0, 

determine a self-adjoint boundary value problem in L?(0,0); [9]. Let Sq 

denote the spectrum of this problem and let S’ denote the set of (finite) 

cluster points of Sa. The set S’, “the essential spectrum,” is independent 

of a; [9], p. 251. The characterization [2] of S. and S’ in terms of N(T, A), 

together with (*), (**), gives some curious consequences for the theory of 

the spectra of differential operators. 

No examples are known for which (1) is of limit-point type and S« 

contains a point spectrum which clusters at —oo. However, (*) implies the 

following : 

CoroLtLary 1. There exist real-valued, continuous functions q = q(t) 

on 0OSt<oo such that (1) ts of limit-point type and Sa (for every a) 

is @ pure point spectrum clustering at, and only at, both «o and —o. 

The spectrum Sq has no finite cluster if and only if the Green kernel, 

belonging to S, and a d (real or non-real) in the complement of So, is com- 

pletely continuous. The known examples of completely continuous Green 

kernels are the cases where (1) is non-oscillatory for every 4; correspondingly 

Sq clusters only at oo. The Green kernels cannot have the property of 

complete continuity if (1) is oscillatory for some A and non-oscillatory for 

some A; [3]. But examples, proving Corollary 1, show that certain Green 

kernels can have this property when (1) is oscillatory for every A (and S. 

clusters at both —o and o). 
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CoroLtLary 2. There exist real-valued, continuous functions = q(t) 

on 0 St << such that (1) is of limit-point type, is oscillatory for every Xr 

and possesses a non-trivial (540) solution of class L?(0,0) for every dX. 

Furthermore, the “ Green kernels” are completely continuous. 

It is known that Sq always cluster at oo; [5], p. 310. It is also known 

[11] that if S. contains a (non-vacuous) continuous spectrum, then the latter 

is unbounded. However, it is not known whether or not the essential spectrum 

8’ is necessarily unbounded when it is non-vacuous. Nor is it known whether 

or not S’ can contain an isolated point. The latter two questions are 

answered by 

Corottary 3. There exist real-valued, continuous functions q = q(t) 

on 0=t < such that (1) is of limit-point type and Sq (for every a) is a 

pure point spectrum clustering at, and only at, 0 and o (or at, and only at, 

0 and both —o and ow). 

If (1) is oscillatory for some A and non-oscillatory for some other A, 

then (1) is of limit-point type ({1]) and the least cluster point of Sq is the 

greatest lower bound, A», of those A for which (1) is oscillatory; [3]. The 

spectrum S, clusters at A =A, from the left if and only if (1) is oscillatory 

for A=); [1], p. 698. In the known examples with —o< ry» <o, the 

spectrum S, always clusters at 4 =A, from the right. But it can be shown 

that this need not be the case in general. 

CoroLtary 4. There exist real-valued, continuous functions q = q(t) 

on 0=t << such that (1) ts of limit-point type, the essential spectrum S’ 

consists of the single point X = 0, but no interval (0, A), where X > 0, contains 

an infinite subset of Sq (for any fixed a). 

Another consequence of (*) is the negative assertion in 

CoroLuaRy 5. A necessary, but not sufficient, condition that (1) be of 

limit-circle type is that (1) be oscillatory and that 

(7) N(T, —N(T, =O(1), as T0, 

for every patr of A-valwes di, do. 

In view of the last corollary and the characterization of essential spectra 

given in [2], the theorem (**) implies: 

CoroLtiary 6. Let § be a closed set on the d-axis. There exist real- 

valued, continuous functions gq q(t) on 0St<o such that (1) is of 

limit-point type and the essential spectrum S’ of (1) is the given set 8. 
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For example, if S is a perfect, nowhere dense set on the interval 

0 =A 1, then there exist differential equations (1) of limit-point type for 

which the set of cluster points of S,, for every fixed «, is S and the point oo 

or S and the points o and —oo. (Each of the alternatives can be realized 

by virtue of the Remark following (**).) 

In the case just mentioned, or whenever S is bounded, there cannot exist 

any continuous spectrum, that is, S, is a pure point spectrum; [11]. Thus, 

if S is chosen to be the entire interval 0 = A= 1, one obtains 

7. There exist real-valued, continuous functions q = q(t) 

on 0St <oo such that (1) ts of limit-point type and, for every fixed a, the 

spectrum 1s a pure point-spectrum which is dense on 0 and has 

(or c and —o) as tts only cluster points not on the interval OS AZ1. 

It is curious to compare this with the result of [5], p. 660. 

3. Proof of Corollaries 1 and 2. Choose ¥(7) —=T in (*) and let 

qg = q(t) be such that (4) holds. Then it follows that N(T,A) ~ T = O(T”), 

as T’—>o, for any A. Hence, by [6], (1) is of limit-point type. It also follows 

from (4) that, if —o< A, <A, <0, then M(T, A.) — M(T, A1) = O(1), as 

T—o. Consequently, the characterization of S, given in [2] implies that Sq 

has no finite cluster point, that is, that S’ is empty. Hence, S, is a pure 

point spectrum. But Sq always cluster at «0; [5], p. 310. Also, S, clusters 

at —co whenever (1) is oscillatory for every A; [5], pp. 313-314. This proves 

Corollary 1. 

Corollary 2 is an immediate consequence of Corollary 1. For if A is not 

in S’, then (1) possesses a non-trivial (£0) solution of class L?(0, 0); [4]. 

The complete continuity of the “Green kernels ” follows from the remarks 

preceding the statement of Corollary 2. 

4, Proof of Corollary 3. Choose y(7) so that y(o) =o, and q(t) 

so that (3) holds. Then (1) is of limit-point type by virtue of the first part 

of (3); [1]. That AO is a cluster point (and the least cluster point 

=—o) of S, follows from [3]. Also N(T,A,.) —N(T,A,) is bounded or 

unbounded, as 7’—>0o, according as di, Az are or are not of the same sign. 

Consequently, 4 = 0 is the only finite cluster point of Sa, by [2]. Since S, 

always clusters at oo, the proof of the first part of Corollary 3 is complete. 

In order to prove the last (parenthetical) part of the Corollary, let 

¥(T) =T and let q(t) be such that (5) holds. Then, as in the last section, 

(1) is of limit-point type and Sq clusters at +o. As in the last paragraph, 
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X= 0 is the only finite cluster point of S,. This completes the proof of 

Corollary 3. 

5. Proof of Corollary 4. This corollary is a consequence of the proof 

of the first part of Corollary 3 and the Remark on A=0 in §1. Let (3 bis) 

hold, as well (3). Then it follows that N(T,A) —N(T,0) =O(1), as 

T—o,ifr>0. Thus, by [2], the interval (0,A) contains at most a finite 

number of points of S, (for any fixed a). 

6. Proof of Corollary 5. That a necessary condition that (1) may be 

of limit-circle type is that (1) be oscillatory has been proved in [1], p. 698. 

When (1) is of limit-circle type, a boundary condition (3) at ¢=0 and a 

similar condition at to determine a self-adjoint boundary value problem 

in L7(0,0) with a pure point spectrum, without a finite cluster point; [9]. 

The characterization in [2] of the spectra S, for the case that (1) is of 

limit-point type clearly has an analogue for the spectra associated with the 

boundary value problems belonging to a differential equation (1) of limit- 

circle type. Hence, in the latter case, (7) must hold (otherwise the spectrum 

will have a finite cluster point A satisfying A, = ASA). Thus the positive 

part of Corollary 5 follows. The negative part follows from the proof of 

Corollary 1. 

7. Proof of the case (3) of (*). It can be supposed that y(o) =o, 

otherwise (*) is trivial. For if y(0«) <o, it is sufficient to choose any q(t) 

satisfying q(t) oo, as Then g(t) +A is negative for large f¢, 

and so a solution x = z(t) 0 of (1) has no zeros for sufficiently large ¢. 

Thus, V(T,A) = O(1), as for every A. But this is equivalent to 

(3), (4) and/or (5) when <2. 

In order to prove the case (3) of (*), it will first be shown that there 

exists on 0 = ¢ << a step-function g*(¢) such that if N(T,A) refers to 

(8) + (q* +A)y=0, 

rather than to (1), then (3) holds. This method for obtaining counter- 

examples in the theory of the differential equation (1) was introduced in [8]. 

By a solution of (8) is meant a function y—y(t) which, on 0OSt<o, 

possesses a continuous first derivative and which, on any open interval where 

q* is continuous, posssesses a continuous second derivative satisfying (8). 

There is no loss of generality in supposing ¥(0) —0 (for otherwise 

w(T) can be suitably altered in a vicinity of 7 —0, but the behavior of 
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y(T’) near 7’ 0 does not enter the hypothesis or assertion of (*)). Let 

<a,<- denote an (unbounded) sequence of 7-values satisfying 

(9) y(ad,) =n for n=0,1,---. 

Define a sequence of numbers (1 <<) in such a way that 

as n—>oo, and 

(10) an < bn < Where by =a, + and n=0,1,°--. 

Introduce the abbreviation 

(11) fin = for n=0,1,°- -. 

It will be supposed that vo, v1,- - - increases so rapidly that 

(12) Vnst = Pn) ), AS NO. 

Define g* = qg*(t¢) for 0 St <oo as follows: 

q*(t) OD On St < da; q* (t) =—pn on bn St < 

for n==0,1,---. Thus a solution of (8) has the form 

(13) = cos[ (vn + A)#(t — an) ] + Bn sin[ (vn + A)*(¢—an)], 

(14) y(t) = An exp[ —A)4(t — bn) ] + Bn exp[— (un —A)#(¢ — bn) ], 

on the respective intervals a, << t < Dn, bn << t < nis, for sufficiently large n. 

Such a solution is determined for large ¢-values by fixing, say, ax, Bx for a 

sufficiently large K and determining the gp, 8, and the An, Ba, for n= K, 

by the conditions that 

(15) y(t—0) =y(t-+0) and y/(t—0) +0) 
hold at the points t = bx, * 

8. In the sequel, the following abbreviation will be used: If ¢,, ¢2,- - - 

and d,,d2,- - are two sequences, the symbol O(dn), as will 

signify, as usual, that there exist a constant M such that | c, |S M | d, | for all 

sufficiently large n. But the symbol ¢, = Ow(dn) will signify | ¢, | S M | d, | 

for the specified constant M and for the specified index n (rather than for 

some constant M and all sufficiently large n). 

Let A= 0.be fixed. It will be shown that there exists a positive integer 

K = K(d), so large that vx + A> 0 and that, for all n= K, 

(16) sin(vn + A)8(bn — Gn) = 2A/2vn + O1(1/rn?), 
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+ 
and that if 0 =A, then for alln=K 

(19) (1+ On(1/on)) (1 + Oj(1/0n) )** =1 + = O2(1), 

and that if C is a fixed constant, say 

(20) C = 18/r | d|, 

then for alln= K 

(21) (1+ Oo(1/m)) (1+ Oo(1/rn) )* exp[— 2 — — Bx) ] 
== 

The definition of b, in (10) shows that 

(Yn + A)®(bn — an) = (vn + = + A/vn)*§ = + +--+); 

so that the left-hand side of (16) is + as 

m—>co. Clearly, K can be chosen so large that (16) holds for all n= K. 

The left-hand side of (17) is 

(¥n/pn)3(1 A/vn)3(1 — 

= (Un/pn)*(1 + +) (1 + 

In view of the definition (11) of pn, the last expression is 

+ (1/rn) ) 

if n is sufficiently large. Also, vn/pn = vn/Vnsi1® S1/vnui*. Hence (17) holds 

for all n= K if K is sufficiently large. 

Similarly, it is seen that (18) holds for all n= K if K is sufficiently 

large. It is also clear that if K is sufficiently large, then (19) is valid for 

all n= K. 

As to (21), the exponential factor, for large n, does not exceed exp 

[— — bn) ] which, according to (12), is o(exp[—vns1]), as 

This makes obvious the existence of a K for which (21) holds when n= K. 

9. It will be shown that if Bx is chosen to be 1, and ag is chosen to be 

O2(Bx/K*), for example, a —0, then, in the corresponding solution (13), 

(14) of (8), for n= K, 

(22n) Ag — (1 + Oo(1/v0)) 

(23,) By = — Bn(d/4vn) (1 + 
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and 

(24n) = A,(1 + O1(1/vns1) yexp[ (Ansa bn) |, 

(25n) Basi = + exp| Dn) |. 

It can be remarked that if (24,), (25n) hold, then by (19), 

The proof of (22,)-(25n) for n= K will be by mathematical induction on n. 

Since the passage from n to n + 1 will depend on (15) and (26,), it is clear 

from the choice of «x, Bx that a direct verification of (22x)-(25x) need not 

be made. 

Let n(= K) be fixed and suppose ‘that (22n)-(25n) hold; in particular, 

that (26,) holds. The relations (15), where ¢=Dny,1, give, by virtue of 

(13), (14), 

Ans By, = COS + Bnsi sin, 

Anu — Baa = + d)3 A) 3{— SIN + cos}, 

where the argument of sin, cos is (vni1 + — Oni). By (16), (17) 

and (26,), these equations take the form 

Ans + Bast = + (— + Or ), 

— = O2(1/vns2”) {02 + O1(Bnsr) }- 

Since S <1, it follows that 

Ans = — (7A/4 ZO 2414442 

Hence, (22n::) follows from the definition (20) of C. If the last two simul- 

taneous equations are solved for Bn, it is seen that (23n,,) holds. 

The relations (15), where t = anys, give 

Base = —A)3 (Vase + exp[> — Bar exp(—[- - -])}, 

where 

In view of (18), these equations can be written as 
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(29) = + Ansa 

{1 — exp(—2[- -])} expl: 
Since (22n.1), (23n4:) have just been verified, it follows that 

= (1 + Oo(1/rnes)) (1 
Thus (24.1) is a consequence of (28) and (21), while (25,.,) follows from 

(29), (21), and (18). This completes the induction and so (22n)-(25n) 

hold for all n= K. 

10. Without affecting the preceding considerations, it can be supposed 

that K has been chosen so large that 

(30) 1+0;(1/m) forn=K if h=1, C or |A| +2. 

It follows from (22,), (23n) that | 

(31) Br, as 

and that An, B, have the same sign at each n= K. Also, (22n41) and (25n) 

show that 

(32) = + Oo(1/vnsi))(L + 

where [- - -] is given by (27). 

Since A, and B,, at each n= K, have the same sign, it follows from 

(14) that y(t) has no zero on bk; St If A> 0, then Ay and Any 

are of opposite signs, by (30), (32). It follows, therefore, that y(t) has 

an odd number of zeros on nis << t < Dnsi. But (13) and (10) show that 

y(t) has on this last interval at most 1+ (vnia +A)4/vnss4 zeros. Since 

1+ (vnsi + A)?/rnut > 2, as m0, it follows that y(t) has, for large n, 

exactly one zero ON Qni1<¢t < bni:. Thus the second part of (3) is a 

consequence of the definition, (9), of dn. 

If X< 0, then A, and An,, are of the same sign, and so y(t) has an 

even number of zeros on ny: < t < Day. But, on this interval, y(t) has at 

most 1 + (vn.1 + zeros. Since 1 + (vn. + < 2 when A < 0, 

it follows that y(t) has no zero on dni. << t < bay. Thus the first part of (3) 

is proved. 

11. This proves the case (3) of (*) if g(t) is allowed to be a step- 

function, g*(¢). It will be shown that g*(¢) can be modified so as to become 

a continuous function q(t), for which (3) remains valid. 
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Since every solution y= y(t) of (8) has an absolutely continuous first 

derivative, one has d(y?+ = 2y'(y + y”) dt = — 2yy’(q*¥ +A—1) dt. 

Thus and so 
t 

—O(exp f (| g*(s)| + |A|+1)ds), as In particular, 

0 

(33) | y(t)| = O(Q(t)), as te, 
t 

where 0(¢) = exp} f (| g*(s)| -+s)ds. The point in the inequality (33) 

0 

is that y(t), being a solution of (8), depends on A but the majorant 02(t) 

is independent of A. 

Starting with g*(¢) construct a continuous function q(t) on 0S 

by letting g(t) = q*(t) except on small intervals, say (bo, bo + €0), (@1 — 1, 1), 

bs + €:), (@2 —€2, Where g(t) is linear. Let 

(34) e(t) = g(t) —q*(t). 

It is clear that if the numbers ¢, ¢:,: - - tend to 0 sufficiently rapidly, then 

(35) | e(t)| 2?(t)dt 

Let y= y:(t) (t,A) and y = = y2(t, A) be a pair of solutions 

of (8) satisfying the Wronskian condition y/142— yiy’2=1. If (1) is written 

as 2” -+ (q* + = (q*—q)a, it is seen that every solution 

=2(t,A) of (1), and its derivative, can be written in the form 

(36) = Poy: — Pry2 and 2 = poy’, — pry’s 

where, for 7 — 1, 2, 

iltsd) t (a*(s) as, 

and y1. y2 are constants. The results of [10], pp. 261-268, show that (33) 

and (35) imply that c; lim p;(t,A), as too, exist for 7 1,2; further- 

more, ¢; = C2 = 0 only if x(t) =0. (In [10], g and g* are assumed to be 

continuous, but it is clear that the discontinuities of g* do not affect the 

arguments there.) 

t 
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Let A) #0; so that at least one the numbers is not 

zero. For the sake of concreteness, let c, ~ 0. Then the Wronskian condition 

on ¥:, and (36) imply zy’; — = pi > G%, ast—>o. Consequently, 

for large t-values, x and y; do not vanish simultaneously and (arc tan y;/z)’ 

does not change sign; and so, the zeros of y, and a separate each other; cf. 

also [7]. Thus (3) holds for (1), since it holds for (8). This completes 

the proof of the case (3) of (*). 

12. Proof of the case (4) of (*). This part of (*) is proved in a 

manner similar to that of case (3). The main differences will be indicated. 

In (10), let the numbers D, be defined by 

(37) bn = On + for n=0,1,---. 

Then (16) can be replaced by 

(38) sin (vn + — an) = —1-+ 

where, say, M = M(A) = 5A?(>(37A/4)?/2!). By a suitable choice of the 

integer K and the constant D (depending on X), it can be shown that the 

corresponding equation (8) has a solution (13), (14), where, for n= K, 

An = —(B,/2) (1 + Op(1/rn) B, = —(Bn/2) (1 Op(1/rn) 

while (24), (25n) hold. 

In this case, A, and A,,, are of opposite sign for all A. Thus, for the 

differential equation (8), the relation (4) can be verified as in §10. The 

passage from (8) to (1) is the same as in § 11. 

13. Proof of the case (5) of (*). This can be proved by another choice 

of b,, namely, 

(39) Dn = On + for n=0,1,---. 

Then (16) becomes 

(40) sin (ve + A)®(Bn — dn) = + O1(1/rn?). 

By the procedure of § 9, it can be shown that the corresponding equation 

(8) has a solution (13), (14), where, for n= K, 

An = Bn(mA/2vn) (1 + Oc(1/mn)), Bn = (1 + Oc(1/m)), 

0 

i 
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while (24n), (25n) hold. Clearly, the proof can be finished by the procedures 

of §§ 10-11. 

This completes the proof of (*). 

14. Proof of (3bis) and (5bis). Return to the proof of the case (3) 

in §9. It will be shown that if A—0 and K is a suitably chosen integer, 

then (8) has a solution (13), (14) where, for n= K, 

An = — $Bn (vn + (1 + Os(1/rn) ), 
(41n) 

and 

= An(1 + O1(1/vns1) ) exp (One — bn)], 

(42n) 
Baa = Yn? An(1 O,(1/vns1) )exp [ (Ans1 bn) |. 

The proof of these formulae, by induction, will be similar to the proof of 

(22n)-(25n). The relations (42n) imply, if n is sufficiently large, 

= (1 + O4(1/vns1) 

Let K be a positive integer. to be fixed below. Let ax, Bx be chosen so that 

(43x-,) holds. 

Assume (41,) and (42,). The equations for An, Bri, in the formula 

lines following (26) become for A= 0 

Ana + Bast = — Ani —- Bay = — Vase 

Thus, by (43n), 

Ans + + O2(Bns1/vns1°) 5 

and so (41n,:) holds. 

The equations for @n.2, Bni2 become identical with those preceding (27), 

where A= 0. These can be written in the form 

where [- - -] is given by (27) when AX=0. By (41n.:), which has just been 

‘ 

3 

= 

x 
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verified, = O1(1) (1 + (1 + Clearly, if 

K is fixed sufficientiy large, then (42n,:) holds. 

The proof can now be completed as in §10. The case A—0 of (5) is 

similar. 

15. Proof of the Remark on (3,) and (5,). Let an, Dn, vn, pn have the 

same significance as in (9), (10), (11), (12). Define 8, 3:,- - - by placing 

8, = + 1/3, where the + is a function of n to be given below. Let g*(¢) 

be defined, for 0=t <0, as follows: 

g*(t) =m +8, on St < dn; g*(t) =—pa +8, on bn St < Any 

for n=0,1,---. Let (13’), (14’) denote the equation which result if 

is replaced by A+ 8, in (13), (14). Then the solutions of (8), for large ¢, 

are given by (13’), (14’). It is clear from §§ 8-9 that if A+ 0, then (8) 

has a solution (13’), (14’) where, for large n, the coefficients satisfy the 

equations which result if A + 8,, A-+ dn, are written in place of A in (22,)- 

(23n), (24n)-(25n), respectively. Thus, by the arguments of § 10, the asymp- 

totic formulae (3) hold if N(T,2) refers to (8). 

It remains to consider (3,). It will be shown that (8), where 4 —0, 

has a solution (13’). (14’) with coefficients satisfying 

An = — (1 + Ou ), 

(44n) 

B,=— Bn(78n/40n) (1 + Ou (1/113) ) 

and 

Cn = A,(1 + O3(1/vns1) yexp[ (Anes bn) |, 

(45n) 

ome An(1 + O3(1/vns1) yexp[ 8n41) 3 bn) | 

for large n, where M = 18/z. 

The equations (45,) imply (26,), if n is sufficiently large. Let K bea 

positive integer, to be fixed below. Let ax, Bx be chosen so that (26x-,) holds 

and assume that, for a fixed n(= K), the relations (44n), (45n) hold. 

The equations for An.i1, Bn4; become those in the formula lines following 

(26,), where A must be replaced by 8,,:. Since (16) and (17) hold for 

large n, with AX = 8, the equations An,;:, Bn, become identical with those in 

the second pair of formula lines following (26,), with the modification that 

dX is Sai. Hence, the definition of 8, shows that (44n,:) holds (if K is 

sufficiently large). 
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Since (18) can be improved, for A — 8, and large n, to 

(un 8n) 3 + 4 — (1 + 

the deduction of (241), (25n) above shows that (45,,,) is a consequence of 

(44n11) if is sufficiently large. 

Let K be so large that (8), where A= 0, has a solution y— y(t) for 

which (44), (45,) hold for n= K. The arguments of § 10 show that, for 

large n, y(t) has one or no zero for ad, St < Gn; according as the + or — 

sign holds in the definition of §,. It is clear that, for a given $(7'), the + 

signs (as function of m), can be chosen so that (3)) holds if V(T,0) refers 

to (8). Since the passage from (8) to (1) is the same as in §11, the case 

(3)) is proved. 
Clearly, the case (59) is proved similarly with the choice by = ay + 2a/vni. 

16. Proof of (**). It can be supposed that the given set 9 is no 

empty. Otherwise it is sufficient to choose so that g(t) as t—>o. 

Then V(T, —N(T,A) = O(1), as for 

Clearly, § 11 implies that it is sufficient to prove the existence of a 

function g*(¢), 0¢<oo, which is a step-function with discontinuities 

clustering only at too and for which the assertion (**) holds if (1) is 

replaced by (8). 

Let 71, 7°, - - be a sequence of points of the A-set S (allowing repetitions) 

with the property that every point of S is either a point or a cluster 

point of the sequence. Let 71,72,- - - denote the sequence 7’; 71, r?, 

r,t, rt, 77, 77, 77, 7°, 7°, 735 so that, for a given there exist arbi- 

trarily large NV and M such that tz = 7* for n—=N,N+1,---,M. 

Let y(t) be a continuous, monotone function satisfying y(0) —0 and 

y(co) = oo, and let (9), (10), (11) and (12) hold. In addition, it can be 

supposed that vo, increases so rapidly that, as 

Gn? = 0(vm), Where on 

Define g* = q*(t), for as follows: 

q*(t) =n for dn St < by and g*(t) for ba St < aan, 

where n= 0,1,---. Corresponding to (13), (14), a solution of (8) has, 

for large n, the form 

(46) y(t) = cos[ (vn + 4 — an) ] + Bu 8in[ (ve + — an) ] 
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(47) y(t) = An exp[(Hn — A + — bn) ] 

+ B, exp[— (un + — bn)] 

for Qn St < Dn, bn St < Gnu, respectively. 

Let « > 0 and d be fixed. A slight modification of the procedures in § 8 

shows that there exists a positive integer K — K (A, «) so large that for n= K 

one has + A—v7, > 0 and 

(48) sin(vn + — dn) =— — + 
(49) (rn —A + tn) (Vn / pn) + 

(50) + tn) A— — vas? (1 + Os 

(51) (1+ (1 + O1(on/vn)) = 1+ O1((2 = O21), 
(52) (1+ On(1/rm) (1 + O;(1/m)) = (1 + 0 Sh, S9, 
and, in addition, for 

(53) C = 18/rze, 

one has 

(54) (1+ Oc(1/mn)) (1 + Oc(1/mn) exp(— -}) = 
where 

(55) (pn —A + Tn)? (Gns1 — On). 

These relations and the arguments of § 9 show that if N= K(A,e) and 

(56) |A—tm|2e>O0 for 

then (8) has a solution y=y(t) for ay StS bys, given by (46), (47), 

where = O2(By/vy?) and, for n= N,N +1,---,M, 

(57n) A,=— (Bua (A — tn) /4vm) (1 + Oc(1/mn)), 

(58n) B, =— (Bua (A — tn) /4vm) (1 + ) 

and 

(59n) = An(1 + exp{: 

(60,) Bnst = + O1((2 + onsr) /vner)) exp{: 

If K is so large that | 01((2 + on)/vn)| <4, | Oc(1/mn)| <4 and 
1+ (vnsr + A— Tner)8/vnss? S 5/2 < 3 whenever n = K, then the methods of 
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§ 10 show that (57,)-(60,) imply that y= y(t) has exactly one or no zero 

on the intervals 6, = ¢ S according as A >t, or A< tm, Where n= WN, 

N+1,---,H. 

Let 4 << w and suppose that there exists an « >0 such that, for all 

sufficiently large n, 

(61) |A—7m|2e>0 and |p—7m|Ze>0. 

Then N(T,») — N(T,.) is unbounded or bounded according as there is or 

is not at least one value of n (hence infinitely many) for which A < tm <p. 

This proves the assertion (**), for (8), in the case in which S has no point 

on the closed interval [A, p]. 

If the open interval (A,) contains points of S, the structure of the 

sequence 7, 72,° - - Shows that there exist an « > 0 and a sequence of increasing 

integers N, < M, < No < M2, - - such that M,— 00, as no, and 

My, where k —1,2,---. Thus, 

(56) holds for N—WN; and M=M,. Hence (8) has on the interval 

by StS by, where N = N;, and M = M,, a solution with no zeros; while if 

dX is replaced by yp, the resulting differential equation (8) has a solution 

with exactly M—WN zeros. Thus the contribution of by=t= by to 

N(T,p) —N(T,A), for T = by, is at least (M—N) —2. Consequently, 

as implies that N(T,») —N(T,A) as 

This completes the proof of (**). 

17. Proof of the Remark following (**). If S is bounded from below, 

the above proof of (**) gives an example in which (1) is non-oscillatory for A 

less than every number in S. In order to obtain an example in which (1) 

is oscillatory for every A, it is sufficient to repeat the above construction, with 

b, in (10) replaced by by = dn + 22/3. 

APPENDIX.* 

In the paper “ Oscillatory and non-oscillatory differential equations ” by 

Wintner and the author, this Journal, vol. 71 (1949), p. 646, the question 

is raised as to whether or not the condition 

(62) q(t) tends monotonously to 0, as t->00, 

implies that the essential spectrum of (1) is the entire A-axis, when (2) is 

of limit-point type. It was proved loc. cit. that the answer is in the affirmative 

* Recieved May 5, 1951. 
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when the growth of q is sufficiently smooth. The object of this Appendix 

is to adapt the procedures employed above to prove that, in general, the 

answer is in the negative. 

There exist on0 St << continuous functions q(t) having the properties 

that (62) holds, that (1) 1s of limit-point type, and that the spectrum Sq is a 

pure point spectrum clustering at, and only at, o and —o. 

This assertion can be considered as a refinement of Corollaries 1 and 2 

in §2. The considerations of § 11 show that it is sufficient to construct a 

step-function g*(¢t) having all of the desired properties, except that of con- 

tinuity. It turns out that the example in the Appendix of [6], pp. 211-212, 

is of this type. In this particular example, the function qg (or q*) satisfies 

f dt/q§ <<. 

It will remain an open question whether or not this holds for every example. 

The function g*(¢) in the Appendix of [6] is defined on 0S t << by 

(63) q*(t) if St < 

and 

(64) a, = 0 and — On = for n—1,2,°--, 

finally 

(65) Vn = ; 

so that a,—>0, while qg*(t) satisfies (62). This function makes (8) of 

limit-point type, by [6], pp. 211-212. It will be shown that, for every A, 

(8) has a solution which vanishes exactly twice on a St < dn,; for. large n; 

in particular, V(T,A) —N(T,») = O(1), as 

This implies, by [2], the statement concerning Sa. 

Every solution of (8) is for large ¢ of the form 

(66) - y(t) = Cos (vn + A)4(E— an) + Bn sin (vn + A)*(t— an), 

where some pair of constants «x, Bx can be chosen arbitrarily and @x,1, Bru, 

@xs2,* * * are chosen so as to satisfy (15). The relations between a», B, and 

are given by 

(67) 
= (vn + + A) sin[- - -] + Bncos[- - -]}, 
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where the argument [: - -] of sin and cos is, by (64), 24(vn + A)4vn4, which 

is of the form 27(1+ A/2m,+-- -), if A fixed and n—>0o. Consequently, 

if n is sufficiently large, cos[- -] = 1 + Om(A?/vn?) and sin[- - -] = Ou(A/rn), 

where and (vn + A) 4S 1—1/2v,3, by (65). Hence, 

(67) becomes 

= (1 + Ou (A?/vn?) ) Ou(ABn/vn), 

(68) 
| | S (1 (Ou + | Bn |)- 

If a, 40, put It will be shown, by induction, that if the 

integer K K(X) is sufficiently large, og +0 and cx = Oy(A/vz-1), then 

0, and the relation 

n 

= Ou (A & 1/ve) SC, where C —C(K, Xd) 
k=K-1 

is a constant (cf. (65)), holds for n = K —1,K,---. Assume % 0 and 

that (69,-.) holds, where n(= K) is fixed. Then the first equation of (68) 

gives 

(70n) = Om (1 + Oouc(A/rn)), where 1+ Oouc(A/m) > 0, 

if K is sufficiently large. In particular, %n,,540. The second equation of 

(68) shows that 

| | (1 (1 + Osuc(A/vn)) (M|A|/vn + | Cn |). 

Since the product of the first two factors on the right does not exceed 1 if K 

is sufficiently large, (69,) follows from (69,-,). This completes the induction. 

Consequently, (70,) holds for n= K,K+1,---. Since y(an) 

by (66), it follows that y(an) and y(dn.1) are of the same sign, so that y(t) 

vanishes an even number of times on a, < t < Gnii. That y(t), for large ¢, 

vanishes exactly twice on ad =t < dy.:, follows by the arguments of § 10. 

This completes the proof of the italicized assertion. 

ParIsS, FRANCE. 
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BOOLEAN ALGEBRAS WITH OPERATORS.* 

By Bsarni JONNsoN and ALFRED TARSKI. 

PART II ** 

Section 4. 

Representation Theorems for Relation Algebras. 

Relation algebras are abstract algebraic systems characterized by means 

of a number of simple postulates which prove to be satisfied if we take the 

elements of the algebra to be binary relations, and the fundamental operations 

of this algebra to be set-theoretical operations of addition and multiplication 

together with relative multiplication and conversion. The relation algebra 

actually formed by binary relations and the operations just mentioned will be 

referred to as proper relation algebras. The natural representation problem for 

relation algebras is the problem whether every relation algebra is isomorphic 

to a proper relation algebra. It has recently been shown that in general the 

solution of this problem is negative.‘* On the other hand, we shall see in 

Theorem 4.22 that every relation algebra has at least a “weak” natural 

representation in which all the operations except the Boolean multiplication 

have their natural meaning. In some further theorems, e. g., 4.29 and 4. 32, 

we shall obtain a positive solution of the natural representation problem for 

certain classes of relation algebras which, however, are of a rather special 

nature. 

When studying abstract relation alegbras it is useful to bear in mind 

that various notions of the general theory of these algebras take on a familiar 

meaning and various results can easily be anticipated when applied to proper 

relation algebras. 

DEFINITION 4.1. An algebra 

Y= <A, +, 9, +, 1, 3, 

* Received March 13, 1950. 

** Part I appeared in vol. 73 (1951), pp. 891-939, of this Journal. 

14Cf, Lyndon [1]. The numbers in brackets refer to the bibliography at the 

beginning of Part I of this paper. 
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(where +, -, and ; are operations on A? to A, © is an operation on A to A, 

and 0, 1, and 1’ are elements of A) 1s called a relation algebra if the following 

conditions are satisfied: 

(i) <A, +, 0, -,1> is a Boolean algebra. 

(ii) for any z,y,2eA. 

(iii) 51’ for every 

(iv) The formulas (x and (2; are 

equivalent for any z,y,ze A. 

The operation ; is referred to as relative multiplication, the operation Y 

as conversion, and the element 1’ as the identity element. 

In view of condition (ii) of this definition we shall in general, when 

speaking of relation algebras, omit parentheses in expressions like 

(z;y);2 and z;(y;2). 

Condition 4.1(iv) plays a fundamental role in the theory of relation 

algebras. It is useful to notice in this connection the following 

THEOREM 4.2. In Definition 4.1 condition (iv) can be replaced by the 

following one: 

(iv’) Given any element ae A, the functions f and g defined by the formulas 

f(z) and g(x) for every re A 

are conjugate, and so are the functions f’ and g’ defined by the formulas 

and =x; for every ve A. 

Proof. By 1.11 and 4.1. 

We shall not develop here either the arithmetic of relation algebras or 

the proper algebraic theory of these algebras (the study of isomorphisms, 

homomorphisms, subalgebras, etc.)—except insofar as it is relevant for the 

main purposes of our discussion. Some arithmetical consequences of 4.1 are 

stated in the next theorem. 

THEOREM 4.3. For any relation algebra 

<A, +, 0, -,1, 5,1’, 

15'The axiom system 4.1(i)-(iv) is equivalent to the one given in J6nsson-Tarski 

[2]. For the proof of the equivalence of the two systems see Chin-Tarski [1], Theorem 

2.2; for the relation of these systems to the axiom system in Tarski [2] see Chin-Tarski 

[1], footnote 10. 
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we have: 

(i) If ee A, I ts an arbitrary set, and the elements ye A with iel are 

such that SiyeA, then 
iel 

ed, 

Sm) (#4), and > (ws2). 

(ii) If andysy, 

(iii) 2;0—0—0;2 for every reA. 

(iv) for every ceA. 

for any z,yeA. 

(vi) andesy, then 

(vii) and for every ze A. 

(viii) ;2 for any A. 

(ix) for every 

(x) for any z,yeA. 

(xi) OV =—0, 14 —1, and (1’)V—TI’. 

(xii) Jf we A is an atom, then zc 1s an atom. 

Proof. The proof of parts (i)-(xi) of this theorem can be found 

elsewhere 7°; (xii) obviously follows from (vi), (vii), and (xi). 

THEOREM 4.4. Every relation algebra is a normal Boolean algebra 

with operators. 

Proof. By 2.18, 4.1, and 4. 3(i) (iii) (v) (xi). 

Some further arithmetical notions applying to relation algebras are 

introduced in the following. 

DEFINITION 4.5. Let 

be a relation algebra. 

(i) The element (1’)— is called the diversity element and ts denoted by 0’. 

An element xe A is referred to as 

(ii) an equivalence element if and 

16 See Chin-Tarski [1], §§1 and 2. 

9 
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(iii) a functional element if tic 

(iv) an ideal element if x =1 ;2 ;1. (2 

The reasons why we have chosen the terms introduced in 4. 5(ii)(iii)(iv) th 

will become clear in our further discussion (see Theorem 4. 24 and remarks 

preceding Definition 4. 8). 
an 

THEOREM 4.6. Given a relation algebra ¢.. 

we have th 

(i) 
(ii) 70°; 0’ ag 

(iii) For every xe A the following three conditions are equivalent: x is (i 

an equivalence element, x ; = = ZY, and 

(iv) If 2, yeA, xz ts a functional element, and yz, then y ts a func- H 

tional element. di 

(v) If z,y,zeA, and x is a functional element, then 1. 

ws (y+2)—= and (y+ 2) (y (232%). 
(vi) If reA and eS’, then x is both an equivalence element and a 

functional element. 

(vil) Jf z,yeA, zis an atom, and y is a functional element, then x ; y =0 

or x;y ts an atom. 

(viii) Jf z,yeA are ideal elements, then x+y, x-y, and az are ideal ( 

elements. (i 

(ix) Jf z,yeA are ideal elements, then and =z. 

(x) If z,y,zeA and zx ts an ideal element, then pl 

M 

(xi) 0 and 1 are ideal elements. co 

(xii) 1,21 1s an ideal element for every xe A. be 

(xili) weA is an ideal element if, and only if, x and a are equivalence 

elements. 
By 

Proof. The proof of all parts of this theorem, except (vii), can be | Be 

found elsewhere.*? To prove (vii), suppose z is an atom and y is a func- a oof 

17 See Chin-Tarski [1], § 3. 
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tional element. Consider any element z40 such that zS2z;y. Then 

(x;y) and hence, by 4.1(iv), (2;y’) Since z is an atom, 

this implies that =z ;y¥. Hence, by 4. 1(ii) (ili), 4. 3(ii), and 4. 5(ii1), 

ang, 

and therefore z—-2;y. Since this is true for every z0 with zz ;y, 

we obtain the conclusion of (vii) at once. 

We shall now establish some facts belonging to the proper algebraic 

theory of relation algebras. 

THEOREM 4.7. (i) A homomorphic image of a relation algebra ts 

again a relation algebra. 

(ii) A cardinal product of relation algebras is again a relation algebra. 

Proof. The corresponding theorem for Boolean algebras is well known. 

Hence and from the form of conditions (ii), (ili), and (iv) of 4.1 we see 

directly that 4. 7(ii) holds; to obtain 4.7(i) we notice in addition that, by 

1.15(i) (iii) and 4.2, condition 4.1(iv) can be equivalently replaced by a 

system of equations. 

By an ideal in the relation algebra 

<A, +, 0, 1, 

we understand any non-empty set J C A satisfying the conditions: 

(i) ifa,yeJ, thn z+yeJ; 

(ii) if and yeA, then ;yed, and y ;xeJ.® 

The connections between homomorphisms and ideals in relation algebras 

prove to be entirely analogous to those in Boolean algebras or arbitrary rings. 

Moreover, it turns out that the discussion of ideals in relation algebras reduces 

entirely to the discussion of ideals in Boolean algebras. For a one-to-one 

correspondence which preserves the inclusion relation can be established 

between ideals in the relation algebra 2 and those in the Boolean algebra 

= <I, +, 0, 

where J is the set of all ideal elements ae A. (The system & is clearly a 

Boolean algebra by 4. 6(viii)(xi).) In particular, given any ae J, the set 

of all elements ze A with <a is a principal ideal in & which corresponds 

78 See Chin-Tarski [1], §3 (remarks following Definition 3.23). 

=
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to the principal ideal in 3 consisting of all elements xeJZ with <a; if a 

is not in J, the set of all xe A with z <a is not an ideal in MY. Without using 

the notion of an ideal explicitly, we give a few theorems, 4. 9-4. 14, which 

are suggested by the above remarks and by the knowledge of analogous results 

applying to Boolean algebras. 

DEFINITION 4.8. Let 

be a relation algebra. Let a be any element in A, and B be the set of all 

elements re A such that Then the system 

ce, 

will be denoted by U(a). 

THEOREM 4.9. If 

Y a= <A, +, 0, -,1, 5,1’, 

is a relation algebra and ae A is an ideal element, then U(a) is a relation 

algebra and the function $ on A defined by the formula 

for every re A 

maps homomorphically onto U(a). 

Proof. It is well known that ¢ maps homomorphically the Boolean 

algebra <A, +,0,-°,1> onto <B,+,0,+,a@>. Moreover, by 4.6(x) we have 

= (x); for any a, ye A, 

while, by 4.3(v) and 4. 6(ix), 

¢(z’) = [¢(x)]¥ for every re A. 

Since, in addition, ¢(1’) —=a- 1’, we conclude by 4.8 that ¢ maps & homo- 

morphically onto &(a). Hence, by 4.7(i), &(a) is a relation algebra. 

Notice that a necessary and sufficient condition for A(a) to be a relation 

algebra is that a be an equivalence element (and not necessarily an ideal 

element). 

THEOREM 4.10. Let 

<A, +, 0, -,1,5,1',% 

| 

e 

i 

I 

t 

1 

| 
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be a relation algebra in which 0341. Then the following conditions are 

equivalent : 

(i) is simple. 

(ii) % has no ideal elements different from 0 and 1. 

(iii) For every re A, implies 1 51—1. 

(iv) For any A, «;1;y=0 imples that or y=0." 

Proof. By 4.9, (i) implies (ii). By 4.3(iv) and 4.6(xii), (ij) 

implies (iii). Now assume that (iii) holds. Let ¢ be a homomorphism 

mapping 2%! onto another algebra 

B= <B, +-, 0, >, 1, 3, 

and suppose B contains at least two different elements. By 4.7(i), B is also 

a relation algebra. If z,yeA and (7) = ¢(y), and if we put 

tye, 
then ¢(z) = 0, and hence, by 4. 3(iii), ¢(1 5251) =0. Hence ¢(1 ;1) 

~1=—¢(1), and therefore 1 ;z2;11. It follows by (ili) that z—0 

whence a= y. Thus, ¢ is an isomorphism. Consequently, (ili) implies (i), 

and conditions (i)-(iii) are equivalent. 

Suppose now again that (iii) holds, and consider any elements z, ye A 

such that ;1;y—0. By 4.3(ili) we obtain 1 ;x;1;y—0. Hence, by 

(iii), if 0, then 1 ; y and therefore, by 4.3(iv), y=0. Thus (iii) 

implies (iv). Finally, assume (iv) to hold. From 4.3(x), with a and y 

replaced by 1 ;x and 1, respectively we obtain (1 ;2)Y¥;(1;2;1)-S0, 

and therefore, by 4. 3(v) (xi), ;1;(1;2;1)-=0. Hence, by applying 

(iv) and with the help of 4.3(vii) (xi), we conclude that, if +40, then 

(1;2;1)-=0 and1;2;1=—1. Thus, (iv) implies (iii), and the proof 

is complete. 

THEOREM 4.11. Every relation algebra which is a subalgebra of a 

simple relation algebra is itself simple. 

Proof. By 4. 10(i) (iii). 

THEOREM 4.12. Let 

Y == <A, +, 0, -, 1, 3,1’, 

be a relation algebra. Let I be an arbitrary set, and, for every ie I, let 

By +4, 04, 1a, 54, 1's, 

7° This is a joint result of J. C. C. McKinsey and A. Tarski; see Jénsson-Tarski [2]. 

> 
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be a relation algebra. In order that X% be tsomorphic to the cardinal product 

of the algebras B; tt is necessary and sufficient that there exist elements a;e A 

satisfying the following conditions: 

(1) Ya, —1. 
iel 

(ii) If jel and iy, then a, aj—0. 

(iii) (a%-a:) eA for any elements x,¢A correlated with vel. 
iel 

(iv) a; is an ideal element for every iel. 

(v) W(a:) = Bi for every iel. 

(Condition (iii) 1s automatically satisfied in case the set I is finite.) 

Proof. Let 

be the cardinal product of all the algebras 8; with +e 7. B is then the set 

of all functions ¢ on J such that for every ie Givenie J, let be 

the unique function ¢e B such that 

$(1) =1;, and (7) = 0; for every jel, j 1. 

As is easily seen, using 4. 3(ili)(iv) and 4. 5(iv), the elements b;e B thus 

defined satisfy conditions (i)-({v) of our theorem (with ‘A’ and ‘a;’ 

changed to ‘B’ and ‘b;’). Hence, if 2 is isomorphic to $8, there are also 

elements a;¢ A satisfying the same conditions. 

Assume now, conversely, that there are elements ajeA satisfying con- 

ditions (i)-(v). For any given ze A let y(x) be the only function ¢ on J 

such that 

$(1) for every vel. 

Then, by (i)-(iii), y maps the set A in one-to-one way onto the set of all 

functions ¢ on J such that (1) =a; for every ie J. Hence, with the help | 

of (iv), 4.8, and 4.9, we conclude that y maps %& isomorphically onto the 

direct product of the algebras with ie ZI. Consequently, by (v), is 

isomorphic to the direct product 8 of the algebras 8; with ite J. Thus, our 

theorem holds in both directions. 

THEOREM 4.13. Let 

<A, +, 0, 1, 

as well as 8 and € be relation algebras. In order that Y=BxX € itt ts 

necessary and sufficient that there be an ideal element ae A such that 

Q 
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W(a) =B and A(a-) = C. 

Proof. By 4.6(viii) and 4. 12. 

THeorEeM 4.14. A relation algebra is simple if, and only if, it ts 

indecom posable. 

Proof. By 4.8, 4.10, and 4.13 a relation algebra which is not simple 

cannot be indecomposable. The converse is known to hold for every algebra. 

THEOREM 4.15. For every relation algebra X there exist simple relation 

algebras 8; correlated with elements i of a set I such that X is isomorphic 

to a subalgebra of the cardinal product of the algebras 8; and that, for every 

tel, is a homomorphic image of 

Proof. If we replace in 4.15 “relation algebras” by “algebras” and 

“simple” by “indecomposable,’ we obtain a statement which holds for 

arbitrary algebras and is a direct consequence of a result known from the 

literature.2° Hence, by restricting ourselves to relation algebras and applying 

4,7(i) and 4. 14, we obtain 4.15 at once. 

It may be mentioned that relation algebras and specifically simple relation 

algebras are closely related to cylindric algebras discussed in the preceding 

section. In fact, if 

is a relation algebra, and if we put 

C.(z) =1;2 and C,(rz) ;1 for every ze A, 

then 

proves to be a generalized cylindric algebra. Moreover, if % is simple, then 

%’ is also simple, and hence 2%’ is a cylindric algebra in the sense of 3.15 

(compare remarks following 3. 18). 

Besides simple algebras, a more special class of relation algebras—in 

fact, that of integral algebras defined below in 4. 16—will be involved in a 

part of our further discussion (see Theorems 5.10-5.12 in the following 

section). An even more important role will be played by still another class 

of relation algebras—in fact, by algebras in which every atom is a functional 

element ; we do not introduce any special term to denote such algebras. Some 

general properties of these two classes of relation algebras will be established 

in the following theorems. 

20 See Birkhoff [2]. 
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DEFINITION 4.16. A relation algebra 

<A, +, 0, 1, 1’, 

is said to be an integral relation algebra (or a relation algebra without 

zero divisors) tf and tf, for any x, ye A, the formula ; y = 0 implies 

that or y=0. 

THEOREM 4.17. For every relation algebra 

Y= <A, +; 0, -,1, 5,1’, 

in which 01 the following conditions are equivalent: 

(i) as an integral relation algebra. 

(ii) For every re A, x0 implies x 51 —1. 

(iii) Every functional element xe A such that x0 1s an atom. 

(iv) 1’ ts an atom. 

Proof. Assume (i) to hold. By 4.3(x) with y=1 we have zV ;( ;1)— 

= 0 for every xe A. Hence, by (i) and 4.16, or 7;1—1. If 

then, by 4.3(vii) (xi), and therefore ;1—1. Thus, (1) 

implies (ii). 

Suppose that (ii) holds. By 4.3(viii), with y—1 and z—1’, and 

4,1(iii), we obtain for every ye A: 

(1) If y0, then (y 51) my sy. 

Let now «+0 be a functional element and let y be any element such that 

By 4.1(iii). 4. 3(ii) (vi), 4.5(iv), and (1) we have 

Hence yz. Thus, z is an atom, and-(ii) implies (iii). 

By 4.6(vi), 1’ is a functional element. Also, 17°40 since otherwise 

we should have, by 4.1(ili) and 4. 3(iii). 

contrary to the hypothesis of the theorem. Hence, (iii) implies (iv). 

Now assume that (iv) holds, and consider any elements z,yeA for 

which z;y=0. By (iv), either or (y;1)-1=0. In 

the first case we have 1’ = y ; 1, and hence, by 4. 1(ii) (iii) and 4. 3(ii) (iii), 

teers 

In the second case we obtain, by 4.1(iv), (y¥ ;1’) - 10, and hence, by 



BOOLEAN ALGEBRAS WITH OPERATORS. 137 

4,1(iii) and 4. 3(vii) (xi), y=0. Consequently, by 4.16, (iv) implies (i). 

Thus, conditions (i)-(iv) are equivalent. 

From 4. 3(v) (vii) (xi) it is easily seen that formula z ; 1 = 1 in 4. 17(i1) 

can be replaced by 1 ;x=—1. 

THEOREM 4.18. (i) Every relation algebra which is a subalgebra of 

an integral relation algebra 1s ttself integral. 

(ii) Every integral relation algebra is simple. 

Proof. (i) immediately follows from 4.16. To obtain (ii) we notice 

that, by 4. 3(ii) (iv) and 4.16, condition 4.17(i) directly implies 4. 10(iv). 

(Similarly, 4.17(ii) directly implies 4. 10(iii).) 

THEOREM 4.19. For every relation algebra 

= <A, +, 0, 1, 3, 1’, 

the following conditions are equivalent: 

(i) Every atom xe A ts a functional element. 

(ii) Jf z,yeA are atoms, then x ;y=0 or x;y 1s an atom. 

(iii) Jf ce A is an atom, then ;z 1s an atom. 

Proof. Observe that, for every xe A, ;x) - 1’ implies 0 

by 4. 1(i11) (iv). Hence 

(1) (zV whenever +0. 

By 4. 6(vii), condition (i) implies (ii). Assume now (ii) to hold. If 0 

is an atom, then z is an atom by 4.3(xii), and therefore zV;@ is an 

atom by (ii) and (1). Thus, (ii) implies (iii). From (1) and 4. 5(iii) 

we also see that (iii) implies (i), and the proof is complete. 

THEOREM 4.20. For every atomistic relation algebra 

<A, +, 0, °,1, 5,1, 

in which 01 the following two conditions are equivalent: 

(i) QW is integral and every atom xe A is a functional element. 

(ii) Jf «,yeA are atoms, then x ; y is also an atom. 

Proof. By 4.16 and 4.19(i) (ii), condition (i) implies (ii) for every 

relation algebra 2{ (whether atomistic or not). Again by 4.19(i) (ii), con- 

dition (ii) implies that every atom in % is a functional element, and since 

is atomistic, this condition also implies by 4.3(ii) and 4.16 that W is 

integral. Thus conditions (i) and (ii) are equivalent. 
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We now turn to the main subject of this section—representation theorems 

for relation algebras. We begin with the extension theorem: 

THEOREM 4.21. For every relation algebra 8 there is a complete and 

atomistic relation algebra X which is a perfect extension of B. If B is 

simple, or integral, the same applies to XY. 

Proof. By 2.15 and 4.4 there is a complete and atomistic Boolean 

algebra with operators 2{ which is a perfect extension of 8. From 2.11(i), 

2.18, and 4.1 it follows that 2% is a relation algebra. The second part of 

the theorem results from 2.11(ii), 4.10(i) (iii), and 4.17(i) (ii). 

THEOREM 4.22. Hvery relation algebra 

<A, +, 0, -,1, 5, 

is isomorphic to a relation algebra 

<A, U, A, ©, V, |,J,- 

where A is a family of binary relations RCV, V ts an equivalence relation, 

and I is the identity function on the field of V, while U, A, |, and - have 

their usual (set-theoretical) meaning. 

Proof. By 4.21 no loss of generality arises if we restrict ourselves to 

the case when %f is atomistic. Let, in this case, U be the set of all atoms 

of 2. We define a function F on A by means of the formula 

(1) F(z) = [a,beU and for every re A. 
<a,b> 

Furthermore, we put 

(2) A = F*(A), V =F (1), and J=F(1’). 

Assume that ’(xz) =F (y) for any given z,ye A. YW being atomistic, this 

assumption implies by (1) that 

(3) for every De U. 

By 4.1(iii) and 4.3(i), again in view of the atomistic character of , 

we have 

1’=beU 1’=>beU 

and similarly 

(5) y= (yb). 
V’=beU 

138 
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Formulas (3)-(5) imply that zy. Thus, by (2), 

(6) F maps A onto A in one-to-one way. 

By (1) and 4. 3(i) (iii) we have 

(7) =F («x)U F(y) for any z,yeA 

and 

(8) F(0) =A. 

Consider any z,ye A. If <a,b>e F(a ; y), then, by (1),aS2 ;(y ;b) 

and a,beU. Hence Mf being atomistic, we conclude by 4.3(i) that there 

isaceU Therefore, by (1), <a,c>e F(z), 

<c, b> e F(y), and consequently <a, b> e F(x)| F(y). Ina similar way, using 

(1) and 4.3(ii), we show that the latter formula implies <a, b> e F(z ; y). 

Thus, 

(9) F(x ;y) =F F(y) for any z, ye A. 

Suppose we A. If i.e, <b,a>e F(x), then by (1), 

b<=2;aanda,beU. Therefore (x ;a)-b~0 whence (2V;b)-a0 by 

4.1(iv). Consequently, a= and Thus 

C for every re A. 

Hence the inclusion in the opposite direction can easily be derived with the 

help of 4. 3(vii), so that finally 

(10) F for every ze A. 

In view of (6), / has the inverse function F-! which maps A onto A. 

If we now define the binary operation © on elements of A by putting 

ROS—=F(F - F(8)) for B, 8eA, 

we clearly have 

(11) F(z: y) =F F(y) for any z,yeA. 

By (2) and (6)-(11), the functions / maps %& isomorphically onto 

== <A,U,A, ©, V, 

Hence 9’ is a relation algebra. By 4.3(iv) (xi) we have V| 

thus, V is an equivalence relation. By (1), (2), and 4. 3(iv), the field of 

V is U. Finally, from (1), (2), and 4.1(iii) we see that I is the set of all 

couples <a,a> with ae U—or, in other words, the identity function on U 

to U. The proof has thus been completed. 

: 

| 

) 
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It should be emphasized that, in general, the operation ©) in the 

algebra Y’ of Theorem 4. 22 is not set-theoretical multiplication; i.e., R and 

S being two relations in A, R © S does not necessarily coincide with the 

intersection RMS of R and 8. However, the meaning of © is unambigu- 

ously determined by the fact that, according to 4.1, <A,U,A,@, V> is a 

Boolean algebra; RF © 8 is the largest relation in A included in both Rk 

and §. As was pointed out at the beginning of this section, the representation 

theorem 4. 22 cannot be improved in the sense that the operation © in W’ 

cannot be assumed to coincide with set-theoretical multiplication 9. In the 

remaining part of this section we shall be concerned with those algebras 2’ 

in which © coincides with M, and we shall prove a few special representation 

theorems in which such algebras are involved. 

DEFINITION 4.23. A relation algebra 

<A, +, 0, *, 1, 3, 1’, 

is called a proper relation algebra if A is a family of binary relations, 0 = A, 

and if R+S=RUS, R-S=RNS, R;S—R|S, and RY—R" for 

any R,SeA. YL is called a proper relation algebra on a set U if, in addition, 

U is a non-empty set, 1 =U, and 1’ is the identity function on U. 

When referring to proper relation algebras, we shall use the symbol V 

instead of 1, and the symbol J instead of 1’. 

THEOREM 4.24. Let 

be a proper relation algebra. 

(i) For a relation ReA to be an equivalence element in Y it is necessary 

and sufficient that R be an equivalence relation. In particular, V and I are 

equivalence relations having the same field. 

(ii) If I is an identity function, then, for a relation ReA to be a func- 

tional element in YU, it is necessary and sufficient that R be a function (a 

many-to-one relation). 

Proof. The first part of (i) obviously follows from 4. 5(ii) and 4. 23. 

Hence, by 4. 6(vi) (xi) (xiii), V and J are equivalence relations. Since, by 

4.1(i) (iii), 1G V CI | V, we see that V and J have the same field. Finally, 

(ii) is an obvious consequence of 4. 5(iii) and 4. 23. 

In connection with 4.24 it may be noticed that the notion of an ideal 

element also assumes a rather simple meaning when applied to proper relation 
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algebras. In fact, 2% being a proper relation algebra with the universal 

relation V, let U be the field of V. Since, by 4. 24(i), V is an equivalence 

relation, there exists a partition of U under V, i. e., a family K of non-empty 

mutually exclusive sets XY such that 

U=UXandV=— 
XekK 

It is now easily seen that a relation ReA is an ideal element in the sense 

of 4. 5(iv) if, and only if, for some family LC K, 

Bue 

For THEOREM 4. 25. 

<A, U,A,/N, V, |, 

to be a proper relation algebra, tt is necessary and sufficient that the following 

conditions be satisfied: 

(i) A is a set-field whose elements are binary relations and V is the 

universal set of A. 

(ii) R|SeA and R*eA for any BR, SecA. 

(iii) IeA, and R| I=R—=I| R for every Red. 

Proof. Obvious, by 4.1 and 4. 23. 

THEOREM 4.26. Let A be the family of all binary relations R with 

RCY, and let 

W == <A, U,A,/N, V, |, 

(i) For M to be a proper relation algebra, it is necessary and sufficient 

that V be an equivalence relation and I be the identity function on the 

field of V. 

(ii) For M to be a simple proper relation algebra it is necessary and 

sufficient that, for some non-empty set U, V =U? and I be the identity 

function on U (in other words, that UM be a proper relation algebra on a 

set U). 

Proof. If 2% is a proper relation algebra, then V is an equivalence 

relation by 4.24(i). J being the identity function on the field of V, we 

clearly have J | J=TI and also, by 4. 25(iii), J | 1—J, so that I—J. If, 

conversely, V is an equivalence relation and J is the identity function on the 

field of V, we easily see (e.g., by 4.25) that 2 is a proper relation algebra. 

Assume that 2% is a simple proper relation algebra. By (i), V is an 
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equivalence relation and, U being the field of V, I is the identity function 

on U. Since VA, the set U is not empty. For any given ae U we 

denote by V(a) the set of all couples <z,y>eV such that <a,z eV and 

<a,y>eV. We easily see that 

V | V(a)| V=V(a). 

Since V(a) 4 A, we conclude by 4.10(i) (iii) that V(a)—V. Hence, 

if z, ye U, then <x, x> V(a), <y, y> V(a), and therefore <x, V(a) = V; 

consequently, V = U*. Thus, the conditions stated in (ii) are necessary for 

Y to be simple. If, conversely, V =U? and J is the identity function on U, 

then, by (i), 2 is a proper relation algebra. Moreover, we easily check that 

V|R|V=V for every RCV such that RA A. Hence, by 4.10(i) (iii), 
Y is simple. The proof has thus been completed. 

It should be pointed out at this place that, in general the relation J 

in a proper relation algebra % is not always an identity function. Also, 

even in case %f is simple, the relation V is not necessarily of the form V = U?, 

and hence % is not necessarily a proper relation algebra on a set U. In this 

connection the following two theorems deserve attention. 

THEOREM 4.27. Every proper relation algebra 

Y= <A, U,A, 1, V, |, 7,- 

is isomorphic to a proper relation algebra 

=e <A’,U,A,, V’, |, 

where I’ is the identity function on the field of V’. 

Proof. For every x let co = I*({zx}) and for every Re A let F(R) be 

the set of all ordered pairs of the form <9, y©> with <z,y eR. Moreover 

let 

A’ = F*(A), V’=F(V) and I’ =F (1). 

It is easy to check that the function # maps % isomorphically onto the 

system 

W = <A’, U, 4,9, V’; |, 1’, 
whence it follows that Y’ is a relation algebra. Finally, J’ is clearly an 

identity function on the field of V’. 

THEOREM 4.28. For a proper relation algebra M to be simple it is 

necessary and sufficient that M be isomorphic to a proper relation algebra Y’ 

on a set U. 

i 

| 
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Proof. U being an arbitrary set, we easily see that U?|R| 0? =U? 

for every relation RC U? such that R54 A. Hence, by 4.10 and 4. 23, 

every proper relation algebra 2’ on U is simple, and 2 = Y’ is a sufficient 

condition for 2 to be simple. Assume now, conversely, that 

<A, U, A, N, ¥, 8 

is simple. By 4.24(i) we have 

(1) V is a non-empty equivalence relation, 

and in view of 4.27, we may assume that 

(2) J is the identity function on the field of V. 

Take a fixed element a in the field of V and put 

(3) U = V*({a}). 

Let B be the set of all relations RCV. It follows from (1), (2), and 

4.26(i) that 

is a proper relation algebra. (1) and (3) imply that 

V|0?|V =U? 

so that, by 4. 5(iv), U? is an ideal element in 8. Hence, by 4.9 and 4. 23, 

the function F on B defined by the formula 

F(R) =U? OR for any RCV 

maps 8 homomorphically onto the proper relation algebra 

6 (U0?) <B’, U, A, N, |, 1’, 

where B’ is the set of all relations R C U? while 

(4) 

YW is clearly a subalgebra of %, and hence the same function / maps % 

homomorphically onto the subalgebra 

(5) YW’ = <A’, U, A, N, U?, 

of @(U?), where A’=F*(A). Moreover, by (1)-(4), the set U is not 

empty and J’ is the identity function on U. Hence, according to 4. 23, 

Y’ is a proper relation algebra on U. Finally, since 2% is simple and since, 

by (5), A’ has at least two different elements (U?=4 A), F maps % iso- 

morphically onto 2’. Thus the theorem holds in both directions. 
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THEOREM 4.29. If 

is an atomistic relation algebra in which every atom is a functional element, 

then U is isomorphic to a proper relation algebra. 

Proof. We repeat the proof of 4.22 by defining U, F, A, V, and /, 

and deriving conditions (6), (7), (8), (11), and (12). In view of 4. 25, 

our task reduces to showing that 

F(a: y) =F(r)N F(y) for any z,yeA. 

This condition is clearly equivalent to 

(1) - (y;b) for any z,ye A and be U. 

Now, if be U, then bY eU by 4.3(xii). Hence, by hypothesis, bY is a 

functional element, and we obtain (1) by applying 4.3(v) (vii) and 4. 6(v). 

THEOREM 4.30. For every algebra 

Y a= <A, +,0,°,1,5,1,% 

the following two conditions are equivalent: 

(i) & is isomorphic to a proper relation algebra 

a= <A,U,A,N, V, |, 

where A is the family of all relations RCV. 

(ii) YW is a complete, atomistic relation algebra in which every atom x 

satisfies the formula 1’. 

Conditions (i) and (ii) remain equivalent if both the relation V in (i) 

as assumed to be of the form V =U? for some non-empty set U, and the 

algebra MU in (ii) ts assumed to be simple.” 

Proof. Assume (i) to hold. Clearly, 2’ is a complete atomistic relation 

algebra. Every atom ReA obviously consists of a single ordered couple 

<z,y>eV; since, by 4.26(i), J is the identity function on the field of V, 

we easily check that R-*|V|R CI. Hence (ii) follows at once. 

#1 A different characterization of algebraic systems which are isomorphic to proper 

relation algebras constituted by all subrelations of a relation V =U? is given in 
McKinsey [2]. Theorem 4. 30 implies that the algebraic systems discussed by McKinsey 

are relation algebras in the sense of 4.1, and in fact that they coincide with com- 
plete, atomistic, simple relation algebras in which every atom satisfies the formula 

sou 

144 
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Assume now that (ii) holds. We want first to establish some prop- 

erties of atoms in %f. Let U be the set of all atoms in . From (ii) and 

4, 3(11) (iv) (vil) (xii) we easily obtain: 

(1) if weJU, then and SY’. 

Hence, by 4. 5(iii) and 4. 19, 

(2) if we U, then uY;ueU and u; uve, 

and 

(3) if v,weU, then v;weU or v;w=0. 

Consider any u, ve U such that u;uV¥ =v; vY and u¥;u=vY;v. We then 

clearly have 

Hence, by 4. 3(iii) (ix), and v;uY0. Thus (v;u’)-140 

whence, by 4.1(iv), (v¥;1)-wY40. Therefore, by (1), 4. 3(ii) (iv), and 

(ii), Sov;1 and Since uw’;v 0, we obtain 

(u’;v)-1’?40. By applying 4. 1(iii) (iv) we conclude that (wu ;1’)- v0 

and v=€0, so that finally Thus, 

(4) if uve U, =v; and then u—v. 

Now consider any u,v,weU such thatuSv;w. By 4.1(iii), 4. 3(ii) 

(v) (vi), and (1), we conclude that 

Hence, by (2), u;u’¥ =v; vY. Similarly we obtain uw¥;u—wY;w. Since 

u = 0, we have 

v;w=(v;w)- (v;w) €0. 

By applying 4. 1(iv) twice we arrive at 

and (w;wY): (vY;v) 

Hence. by (2), =vY;v. Thus, 

(5) ifu,v,weU and uSv;w, then u;u¥ =v; 0Y, u= wr; w, and 

Finally consider any v,weU such that v¥;v—w;wY, and let u—v;w. 

Since (vV;v) - (w;wY) 0, we obtain, by 4.1(iv), (vsw;wY) - v0. 

Hence, by 4. 3(iii) and (3), u—v;w40andueU. Thus, in view of (5), 

10 
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(6) ifv,weU, and u—v;w, then we U, =v; vw, 

and wv; w. 

We now define a function F on A by putting for every ve A. 

(7) F(x) [for some ueU, a=u;uy, and b=uv; ul. 
{a,b> 

We also put 

(8) F*(A) =A, F(1)=V, and F(1’) =I. 

If z,yeA and F(x) =F (y), we conclude from (4) and (7) that the 

formulas uz and wy are equivalent for every we U. Hence, Wf being 

atomistic, 

(9) F(x) =F(y) implies z = y for any z,ye A. 

Furthermore, we obtain from (7%) with the help of (4), 

(10) F(a@+y)—F(2)U Fly) and y) =F(2)N Fly) 
for any ye A, 

(11) F(0) =A. 

Also, by 4. 3(v) (vi) (vii) and (2), we conclude from (7) that 

(12) =[F(x)]* for every ve A. 

Let now z,yeA, and assume <a,b>eF (x;y). By (7) we have 2; y, 

a=u;uY, and b=wu;u for some we U. Hence, by (ii) and with the 

help of 4.3(i), wv; w for some v,weU such By 

(5) we obtain a=v;vY, b=wY;u, and Let 

Then, by (7), <a,oeF (x), and consequently 

<a, bye F(x)| F(y). If, conversely, <a, b> e F(x) | F(y), then by means of 

an analogous argument, but going in the opposite direction and using (6) 

instead of (5), we obtain <a,b>e P(x; y). Hence 

(13) F(x;y) =F (zx) | F(y) for any z,yeA. 

From (8)-(13) we see that the function / maps isomorphically the relation 

algebra %f onto the algebra 

Hence, by 4.1 and 4. 23, Y’ is a proper relation algebra. The elements of A 

are relations RC V. Consider any relation RCV. By (7%) and (8), for 

every <a, b> there isa we U such that a—=u;uY andb=—uY;u. Since, 

by (ii), 2 is complete, the sum Y of all we UV thus obtained exists, and we 
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easily see from (7) that F(x) —R; hence, Re A. Therefore A consists of 

all relations R C V, and Y’ is an algebra of the kind described in (i). 

Thus conditions (i) and (ii) are equivalent. By 4.26(i) (ii), these 

conditions remain equivalent if they are modified in the way indicated in 

the last part of the theorem. 

THEOREM 4.31. For every relation algebra 8 the following conditions 

are equivalent: 

(i) 8 ts isomorphic to a proper relation algebra 8’. 

(ii) Bis a subalgebra of a complete atomistic relation algebra 

Y= <A, +, 0, -, 1, 5, 

in which every atom «x satisfies the formula 

(iii) % is a subalgebra of an atomistic relation algebra UX in which every 

atom 1s a functional element. 

Conditions (i)-(iii) remain equivalent if both the algebra 8’ in (i) ts 

assumed to be a proper relation algebra on a set U, and the algebra Xf in (ii) 

and (ili) is assumed to be simple. 

Proof. Assume (i) to hold, and put, according to 4. 23, 

B’ == (B,U, A,N, V, |, 

By 4.24(i), V is an equivalence relation. By 4.2%, J may be assumed to 

be the identity function on the field of V. Let A be the family of all 

relations RC V. Then, by 4. 26, 

<A, U,A,/, V, |, 

is a proper relation algebra, and %’ is clearly a subalgebra of %’. Since 

8% = B’, we can construct, by applying the familiar “exchange method,” an 

algebra such that is a subalgebra of By 4.30, is a complete 

atomistic relation algebra in which every atom @ satisfies the formula 

t’;1;x2S1. Thus, condition (i) implies (ii). By 4.3(ii1)(iv) and 

4. 5(i1i1), condition (ii) clearly implies (iii), while, by 4. 29, (iii) implies (i). 

Hence, conditions (i)-(iii) are equivalent. By means of an analogous argu- 

ment we can show that these conditions remain equivalent if they are 

modified in the way indicated in the last part of the theorem; to derive 

then (i) from (iii), we apply 4.11 and 4. 28, in addition to 4. 29. 

So far Theorem 4.15 has not been involved in our discussion of the 

representation problem. Nevertheless, some possibilities of applying this 
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theorem to the representation problem can easily be anticipated. In fact, 

as a consequence of 4.15, the representation problem for arbitrary relation 

algebras reduces to that for simple relation algebras. Speaking more 

specifically, consider any class K of relation algebras, and let L be the class 

of all simple relation algebras which are homomorphic images of algebras 

in K. It is easily seen that, if every relation algebra of a certain class has 

a natural representation, the same applies to all cardinal products and to 

all subalgebras of algebras of this class. Hence, if we succeed in showing 

that every algebra of the class L has a natural representation, then, due to 

4.15, this result automatically extends to all algebras of the class K. 

We do not know, however, any interesting applications of Theorem 4.15 in 

the direction just indicated. On the other hand, it will be seen from our 

further discussion that in some cases by means of Theorem 4.15 we can 

obtain additional information regarding relation algebras of which we have 

been able to show (without the help of this theorem) that they have a natural 

representation. 

THEOREM 4.32. Let 

Wan (A, +, 0, 

be a relation algebra in which the element 1 can be represented in the form 

k<m 

where X,2%1,° * *;%m+ are functional elements. Then: 

(i) & is tsomorphic to a proper relation algebra. 

(ii) If W is simple, it is isomorphic to a proper relation algebra YX’ on a 

set U which contains at most m different elements. 

(iii) In the general case, MI is isomorphic to a subalgebra of a cardinal 

product of proper relation algebras YU; on sets Ui, each of these sets con- 

taining at most m different elements. 

Procf. By 4.21, there is a complete and atomistic relation algebra 

<B, +, 0, 

which is a perfect extension of 2. % is of course a subalgebra of B (cf. 2.14). 

The formula 

] = > 

i<m 

stated in the hypothesis continues to hold in 8 (since the summation is finite) ; 

and, by 4. 5(iii), the elements 2; which are functional in % are functional 
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in 8 as well. Therefore, for every atom ae B there is a functional element 

a,¢ B such that a= 2;. Hence, by 4. 6(iv), every atom in % is a functional 

element. Consequently, by 4. 31(i) (iii), the relation algebra 2% is isomorphic 

to a proper relation algebra, and conclusion (i) has thus been established. 

If, in addition, 2% is simple, we see, by (i) and 4.28, that YW is iso- 

morphic to a proper relation algebra on a set U. From the hypothesis we 

conclude, by 4. 23 and 4. 24(ii), that U? can be represented as the union of 

m many-to-one relations. Hence, for every ze U, there are at most m 

different elements y such that <z,y>eU*. Consequently, U has at most 

m different elements, and conclusion (ii) is seen to hold. 

In the general case (i. e., without assuming that Wf is simple), we easily 

see by 4. 5(iii) that, not only the algebra % itself, but also every homomorphic 

image of 2% satisfies the hypothesis of our theorem. Hence, by applying 

4.15 and (ii), we obtain conclusion (iii). 

THEOREM 4.33. Let 

Y= <A, +; 0, =) 1, “> 

be a relation algebra in which 0 ;0° Then: 

(i) 1s isomorphic to a proper relation algebra. 

(ii) Jf W is simple, it 1s isomorphic to a proper relation algebra X’ on a 

set U which contains at most two different elements. 

(iii) In the general case, XU is isomorphic to a subalgebra of a direct product 

of proper relation algebras YU; on sets Ui, each of these sets containing +t 

most two different elements. 

Proof. By 4.5(i) we obviously have 1—1’+0’. By 4.6(vi), the 

element 1’ is functional; under the hypothesis of our theorem, in view of 

4. 5(ii1) and 4. 6(i), the element 0’ is also functional. Thus, 1 is a sum of 

two functional elements. By now applying 4. 32, we obtain all the conclusions 

at once. 

To formulate conveniently the last two theorems of this section, we 

introduce the following notation: 

DEFINITION 4.34. A relation algebra 

Y a= <A, +,0,°,1,5,1,% 

1s said to be 

(i) of class 1, if 0°; 0° =0, 

(ii) of class 2, if 0’; 0° 

(iii) of class 3, if 0’; 
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THEOREM 4.35. Every simple relation algebra 

<A, +, 0, -,1,;, 

satisfies one and only one of the following three conditions: 

(i) & is of class 1 and is isomorphic to a proper relation algebra YX’ on a 

set U which contains just one element; 

(ii) Y is of class 2 and is isomorphic to a proper relation algebra YX’ on a 

set U which contains just two different elements ; 

(iii) % is of class 3 and either is not isomorphic to any proper relation 

algebra or else is isomorphic to a proper relation algebra WY’ on a set U which 

contains at least three different elements. 

Proof. From 4. 5(i), 4.23 and 4. 34(i) (ii) we easily conclude: 

(1) Every proper relation algebra I’ on a set U containing just one 

element, or just two different elements, is of class 1, or of class 2, respectively. 

Hence, by 4.33 and 4.34, if the given relation algebra % satisfies the 

formula 0’; 0’ = 1’, then it satisfies one of the conditions (i) or (il). 

If & does not satisfy the above formula, we have, by 4. 5(i), (0’; 0’)- 0°40 

and therefore, by 4. 10, 

1;((0’;0’)- 0’) ;1—1. 

Hence we obtain, by 4. 1(iii), 4. 3(1) (ii), 4. 5(i), and 4. 6(ii), 

1= (0 +1’) ;((0’; 0’) 0’) +1’) 

Thus, by 4.34(iii), %& is in this case of class 3. Also, since the formula 

0’; 0’= 1° fails, it follows from (1) and 4.34 that 2% cannot be isomorphic 

to any proper relation algebra on a set U containing at most two different 

elements. Hence, 9 being simple by hypothesis, we conclude with the help 

of 4.28 that % satisfies condition (iii). This completes the proof. 

From Theorem 4. 35 it is easily seen that, up to isomorphism, there is 

only one simple relation algebra of class 1 and there are only two simple 

relation algebras of class 2. One of these two simple algebras of class 2 has 

exactly four elements (e.g., the relations A, J, D, and U*, where U is a 

set containing just two elements, J is the identity function on U, and D is 

the complement of J to U*); the other has exactly sixteen elements (e. g., 

all the relations R C U? where U is a set containing just two elements). 

As regards arbitrary relation algebras, it easily follows from 4. 34 that 
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none of them can be both of class m and class n for 1 m<nZ38 unless 

it is a one-element algebra. On the other hand, there are relation algebras 

which are not of class n for any n—1,2,3. By 4.15 and 4. 34, a relation 

algebra is of class nm if, and only if, it is a subalgebra of a cardinal product 

of simple relation algebras of class n. In particular, relation algebras of 

class 1 are of a rather trivial nature. They can be characterized by the simple 

formula 171, or else by the condition that every element in such an 

algebra is an ideal element. It is seen from 4.1 that every Boolean algebra 

<B, +, 0, *,1> can be completed to a relation algebra <B, +, 0, -,1, 5,1’, 

of class 1 by putting zc ;y=—a2-y and c’ —z@ for any z,yeA, as well as 

1’=1. For this reason relation algebras of class 1 are also referred to as 

Boolean relation algebras. 

Since a cardinal product of relation algebras of class n (n —1, 2, 3) 

is again a relation algebra of class n, we infer from 4.15 and 4. 35 that every 

relation algebra 2 can be represented as a subalgebra of the cardinal product 

of three algebras %,, %., and %; of classes 1, 2, and 3, respectively. This 

result, however, will be essentially improved in the following 

THEOREM 4.36. Every relation algebra 

Y= <A, 0, 1, 29 1’, 

is isomorphic to the cardinal product of relation algebras M1, U2, and W, of 

classes 1, 2, and 3 respectively. 

Proof. We put 

(1) dg =1 0’) = (15 075 ag, 

and a; a3". 

Hence obviously 

Furthermore, by (1) and 4. 6(viii) (xii), 

(3) 1, 42, and a; are ideal elements. 

By 4.9 and 4.12, conditions (2) and (3) imply that W(a.), W(ae), and 

Y(a;) are relation algebras such that 

(4) = X W(ae). 

From 4.8 or 4.9 we see that 0, a;, a; - 1’, and a;- 0’ are respectively the zero 

element, the unit element, the identity element, and the diversity element of 
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the algebras 2(a;), 1 1,2,3. Hence, in view of (4) and 4.34, in order 

to complete the proof it suffices to show that 

(5) (a, 0°) (a, 0°) =0, 

(6) (a2 : 0’) (a2 0’) =4d,°1’, 

and 

(7) (a3 0’) ; (a3 0’) —as. 

These three formulas can be established directly by using the laws of the 

arithmetic of relation algebras stated in 4.1, 4.3, and 4.6. The following 

indirect proof is, however, somewhat simpler and shorter. 

Assume first that 2% is a simple relation algebra. Then, by 4. 35, YU is 

of class 1, 2, or 3. If %& is of class 1, we have, by 4. 3(iii) (ix) (xi), 4. 5(i), 

and 4. 34, 

0’ <0’; 0’; 0’ =0;0’ =0 

so that 0°’—0. Hence, by (1), 4.3(ili), and 4.34, a; —=0, ag and 

a,—=1. If Wf is of class 2, then it follows from (1), 4.3(ili), 4. 10(1) (ii1), 

and 4. 34 that a; = 0, a2 and a,—0. Finally, in case is of class 3, 

we infer from (1) and 4.10(i) (iii) that a, 1, a2=0, and a,—0. In 

each of these three cases it easily follows from 4.3(iii) and 4.34 that (5)- 

(7) are satisfied. 

It is easily seen that whenever formulas (5)-(7) hold in given relation 

algebras, they also hold in cardinal products and subalgebras of these algebras. 

(No essential difficulty arises from the fact that, in view of (1) and 4. 5(i), 

‘these formulas implicitly involve the operation of complementation, which i: 

not included in the system of fundamental operations of relation algebras.) 

Consequently, since formula (5)-(7) have been shown to hold in simple 

relation algebras, we conclude by means of 4.15 that they also hold in 

arbitrary relation algebras, and the proof is complete. 

To illustrate this theorem, consider the case when 2% is a proper relation 

algebra, 

<A, U,A,/N, V, 

where V is an equivalence relation with the field U, and J is the identity 

function on U. Let K be the partition of U under V (see remarks following 

4.24). Let K,, Ks, and Kg be respectively the families of all those sets X eK 

which have exactly one, exactly two, and at least three different elements. 

Finally, let 

V;= U X? for 2, 3. 
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The relations V; prove to be elements of A; in fact, they can be identified 

with the elements a; defined in the proof of 4.35. It is easily seen that they 

are ideal elements of 2%; they are obviously disjoint, and their union is V. 

Hence 

% = X X 

Finally, by means of a simple direct argument, we can show that the algebra 

(Vi), for 11, 2, 3, is of the class 7 in the sense of 4. 34. 

From 4.36 we can derive some further consequences by means of 4.15 

and 4.34. For instance, it is easily seen that the formula 0’ ; 0’ = 1’ charac- 

terizes those relation algebras 2 for which the algebra Mf; of 4.36 has just 

one element, and which therefore can be represented as cardinal products of 

an algebra A, of class 1 and an algebra %. of class 2; such algebras can also 

be characterized (up to isomorphism) as subalgebras of cardinal products of 

simple relation algebras of classes 1 and 2. Similarly, the formula 0’ = 0’ ; 0’ 

characterizes those relation algebras which are isomorphic to cardinal products 

of an algebra 1, of class 1 and an algebra ; of class 3. Finally, the formula 

1’ = 0’ ; 0’ is characteristic for those relation algebras which are representable 

as cardinal products of an algebra 2%, of class 2 and an algebra Y; of class 2. 

Section 5. 

Relation Algebras and Brandt Groupoids. 

In Section 3 we have established fundamental relations between Boolean 

algebras with operators and complex algebras of arbitrary algebraic systems 

(algebras in the wider sense). In Section 4 we have studied a special class 

of Boolean algebras with operators—in fact, the relation algebras. We now 

want to discuss connections between relation algebras and a special class of 

algebraic systems—in fact the (generalized) Brandt groupoids; this class 

includes in particular all the groups as its members. 

A Brandt groupoid is an algebraic system formed by a set U of elements, 

a binary operation -, a distinguished subset of U (the set of identity elements), 

and a unary operation -*.: Roughly speaking, the main difference between 

Brandt groupoids and groups consists in the fact that in a Brandt groupoid 

the set U is not assumed to be closed under multiplication; the domain of 

the operation - is not, in general, the whole set U?, but a subset of U?. In 

consequence, a Brandt groupoid may contain many identity elements, i.e., 

many elements u such that whenever 2, and are 

in U. A precise definition of a Brandt groupoid follows: 
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DEFINITION 5.1. An algebraic system (algebra in a wider sense) 

(where + is an operation on a subset of U* to U, I is a subset of U, and -‘ 

is an operation on U to U) ts called a generalized Brandt groupoid if the 

following conditions are satisfied: 

(i) For any elements z,y,zeU such that x-yeU and we have 

y):zeU and (x: 

(ii) For any elements z,y,z2e¢U such that x-yeU and x-y=2-z we 

have y =z. 

(iii) For any elements, z,y,z2eU such that c-zeU and we 

have x= y. 

(iv) for every rel. 

(v) w2*-velandz-2z"'el for every zeU. 

U is called a Brandt groupoid if, in addition, the following condition 

holds: 

(vi) For any elements x,zeI there exists an element yeU such that 

z-yeU and y-zeU.” 

In the next three theorems we state without proof certain arithmetic 

properties of generalized Brandt groupoids which will be used later. These 

results can be obtained by methods that are essentially known from the 

literature.”* 

THEOREM 5.2. Let 

YU = <U, -,1,-5 

be a generalized Brandt groupoid. For any elements x2,y,z2eU we have: 

(i) If yel and x-yeU, then y=—z. 

(ii) If cel and then z-y=y. 

(ili) 

(iv) Jf z-yel, then 

(vi) If e-yeU, then 

(vii) If z-yeU, then +2". 

*° These algebraic systems were first studied by H. Brandt. It is easily seen that 
axioms (i)-(vi) in Definition 5.1 are equivalent to axioms I-IV of Brandt [1]; when 

deriving 5.1(i)-(vi) from Brandt’s axioms, we let I be the set of all elements xe U 

such that 2-7 = 

°3 Cf. Brandt [1]. 
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THEOREM 5.2. An algebraic system 

(where - is a function on a subset of U? to U, ICU, and * ts a function 

on U to U) is a generalized Brandt groupoid if, and only if, the following 

conditions are satisfied: 

(i) For every element xe U there is an element ye U such that x- 

(ii) For any elements z,y,2¢U, if x-y and U ory:2 

and «*(y-*z) are in U, then all these elements are in U and (xy): 2 

== 2). 

(iii) For any element xe U we have rel tf, and only tf, 

(iv) For any elements x,y,zeU the formulas 

are equivalent. 

THEOREM 5.4. For every generalized Brandt groupoid 

the following three conditions are equivalent: 

(i) Uts a Brandt groupoid. 

(ii) For any elements x,zeU there is an element ye U such thatx-yeU 

and y:zeU. 

(iii) For any elements z,yeU there are elements u,veU such that 

u-yeU and 

According to Definition 3. 8, the complex algebra of a generalized Brandt 

groupoid 

U= <U, i, 

is the algebra 

am CAG, AT), 

where A is the family of all subsets of U. The operations -*, J*, and -1* are 

understood in the sense of Definition 3.2. Thus, -* is an operation on A? 

to A; for any sets X and Y in A, X -* ¥Y is the set of all elements ze 7 

such that z—2a-y for some re X and ye Y. Similarly, for any XeA, 

A-* is the set of all ye U such that y= X= for some re X. Finally, since 

I is a subset of U, i.e., a unary relation, 7* is an operation of rank 0 such 

that J*(A) —J. This operation J* will be replaced as usual by the set J 
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itself which will be treated as a distinguished element in A (see remarks in t 
the introduction). Thus we shall speak of f 

<A, U, A, U, I, 

as the complex algebra of U1. i 

THEOREM 5.5. Let 

U=<U, 

be a generalized Brandt growpoid, and let ( 

== <A, U,A,, U, -*, I, 

be the complex algebra of U. Then we have: e 

(i) 1s a relation algebra with at least two different elements (A~ U)— 

in fact, a complete atomistic relation algebra in which every atom is a func- | 

tional element. 

(ii) Jf Uis a Brandt groupoid, then X is simple. 

Proof. By 3.8, U& is a complete atomistic Boolean algebra with operators. i 

By 5.38(ii), for any sets X,Y,ZeA (i.e., for any subsets ¥, Y, Z of U) U 

we have cl 
(X -* VY) -*Z=X-*(¥ -*Z), w 

From 5.1(v) and 5. 2(i)-(iii) we conclude that ‘ 

Xm X -* I, 

By 5.3(iv) the formulas 

(X -*Z)N Y =A, and (Z -* Y"*)N XmA o 

are equivalent. Hence, by 4.1, 2% is a relation algebra. Since U AA, : 

has at least two different elements. 

Every atom X in & is clearly a set of the form XY = {zx} for some ze U, ‘i 

and therefore, by 5.1(v), it satisfies the formula X¥-** -* ¥ CJ. Thus, by ‘ 

4. 5(ili), every atom in is a functional element. 

If, finally, U is a Brandt groupoid, we easily see from 5.4(i) (iii) that 

U-*X-*U =U for every XeA such that YA. Hence, by 4.10(i) (iii), 
% is simple. 

THEOREM 5.6. Let Si 

Y= <A, +, 0, °,1, 5,17, (2 

be an atomistic relation algebra, with 0 ~1, in which every atom is a func- 

§ 

‘ 2 
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tional element. Let U be the set of all atoms of UM, let I be the set of all 

those atoms u for which uS1’, and let 

<U, I, “> 

We then have: 

(i) WU is a generalized Brandt groupoid, and XM is isomorphic to a sub- 

algebra of the complex algebra of U. 

(ii) If WM is complete, then WU ts isomorphic to the complex algebra of U. 

(iii) If M is simple, then U is a Brandt groupoid. 

Proof. We first want to show that the algebraic system U satisfies 

eondition 5. 3(i)-(iv), with - and -* replaced by ; and Y, respectively. (The 

domain of the operation ; is understood to be restricted to the set of those 

couples y> U* for which z ; ye U. An analogous remark applies to the 

operation “, and from 4. 3(xii) it is seen that the domain of the operation Y 

thus restricted is U.) 

By 4.3(vii) (xii) and 4.19(i) (iii) we have and 

for every re U. Hence 5.3(i) holds. If, x,y,z, 2 ;y, and (x ;y);2 are in 

U, we have (x ;y);z—a ;(y 52) by 4.1(ii). Hence, by 4. 3(iii), we con- 

clude that y ;z>40, and therefore y ;zeU by 4.19(i) (ii).. Similarly, 

under the assumption that z,y,z, y;2, and x;(y;z) are in U, we 

obtain and z;yeU. Thus, 5.3(ii) holds. From 

4, 6(iii) (vi) we see that == foreveryzvel. If, conversely, ; and 

weU, we have, by 4.1(ili), 4.6(v), and the hypothesis of the theorem, 

(2 —2;5(z-1’). Hence, by 4.3(ii), there- 

fore -1’=—-2 (x being an atom), and consequently xeJZ. We have thus 

obtained 5.3(iii). If, finally, z,y,zeU and ;y =z, then (2 20, 

hence, by 4. 1(iv), (/;2) y0, and therefore zV;z=40. Consequently, 

: by 4.3(xii) and 4.19, z¥;z is an atom, and since y is also an atom, the 

formula ;z) - y40 gives Thus ;y =z implies 

| for any z,y,zeU. From this implication we easily derive 5. 3(iv) by means 

of: 4. 3(v) (vii). 

E We now know by 5. 3 that U1 is a generalized Brandt groupoid. We define 

i a function F on A by putting for every re A 

(1) F(z) [vweU and 
u 

Since & is atomistic, this definition clearly implies for any z,ye A: 

(2) If F(x) =F (y), then (i.e., F is one-to-one). 

(3) F(a+y) =F (2)U and y) = F(y). 
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We also have 

(4) F(0) =A, F(1) —J, and F(1’)) 

By 4. 3(vi) (vii) (xii) we obtain for every re A 

(5) F(z’) and, for some and ue F(z) ]. 

Finally, we can show that for any z,yeA 

(6) F(c«;y) [welU and, for some uandv, w=u;v, ueF(z), 

and ve F(y)]. 

In fact, if we F(z ; y), then, by (1), we U andw=z2;y. Hence, with the 

help of 4.3(i) and 4.19, w—=wu-;v for some u,veU such that uz and 

v S y, and therefore, again by (1), w =u ; v for some we F(z) and ve F(y). 

If, conversely, we U and w=u;v for some ue F(x) and ve F(y), then 

weF(x;y) by (1) and 4. 3(ii). 

In view of 3.2 and 3.8, conditions (1)-(6) show that F/ maps 

isomorphically onto a subalgebra YW’ of the complex algebra of U. If W is 

complete, 2’ clearly coincides with the complex algebra of U. If Y is simple, 

we have, by 4.10, z=1;y;1 for any z,yeU, and hence, by 4. 3(i) (iii) 

and 4.19, z=u;y;vandu;yeU for some u,veU. By 5.4 this implies 

that U1 is a Brandt groupoid. The proof has thus been completed. 

We now can establish a converse of 5. 5: 

THEOREM 5.7. Let 

U— <U, R, I, 8> 

be an algebra in the wider sense in which RC U*%, ICU, and 8 CU?. 

Assume that the complex algebra XU of U is a relation algebra in which every 

atom is a functional element. Then we have: 

(i) UW ts a generalized Brandt groupoid. 

(ii) Jf YW is simple, then U is a Brandt groupoid. 

Proof. By 3. 8, 3.9 and the hypothesis, & is a complete atomistic relation 

algebra, with at least two different elements, in which every atom is a func- 

tional element. Hence, by 5.6, 9% is isomorphic to the complex algebra 2’ 

of a system WU’ which is a generalized Brandt groupoid; moreover, UW’ is a 

Brandt groupoid in case Mf is simple. From 3.2 and 3.8 we easily see that 

any two algebras in the wider sense are isomorphic whenever their complex 

algebras are isomorphic. Hence U1 is isomorphic to 1’; therefore U is a 

generalized Brandt groupoid and, in case 2 is simple, it is a Brandt groupoid. 
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As is seen from 4.19, the assumption that every atom in %& is functional 

can be replaced in the hypothesis of 5.7 by the assumption that # is a binary 

operation (on a subset of U? to U), and not only a ternary relation. 

THEOREM 5.8. For every relation algebra 

Y= <A, +, 9, °, 1, I’, 

in which 0 1 the following two conditions are equivalent: 

(i) & is isomorphic to a proper relation algebra, 

(ii) % is isomorphic to a subalgebra of the complex algebra of a generalized 

Brandt groupoid. 

Also the following two conditions are equivalent: 

(i) YL is tsomorphic to a proper relation algebra on a set U, 

(ii’) QF is isomorphic to a subalgebra of the complex algebra of a Brandt 

groupoid. 

Proof. Condition (i) implies (ii) by 4.31(i) (iii) and 5.6(i). Con- 

versely, (ii) implies (i) by 4. 31(i) (iii) and 5.5(i). In an analogous way 

we show that conditions (i’) and (ii’) are equivalent; we make use of the 

last part of 4.31 (concerning a modification of conditions 4. 31(i)-(iii)), 

as well as of 5. 5(ii) and 5. 6(i1). 

The following informal remarks concern an interesting class of generalized 

Brandt groupoids which can be referred to as having the unicity property. 

Generalized Brandt groupoids 

Y= <U, I, 

of this class are characterized by the following condition: 

(i) For any z,z¢U there is at most one element ye U such that r- ye UV 

and y+ zeU. 

Another, equivalent formulation of this condition is 

(ii) For any z,yeU, ifx-yeU andy: then 

If V is a non-empty equivalence relation, J the set of all couples <z,2> eV, 

and if we define the operations - and ~* by putting, for any couples <2, y), 

<y, 

* <Y,% = <2; y>* = 

and by assuming that <2, y> - <y’, 2> does not exist in case yy’, then, as 

is easily seen, the system 

ie 
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is a generalized Brandt groupoid with the unicity property. Conversely, 

every generalized Brandt groupoid 11 with the unicity property is isomorphic 

to a groupoid U(V) constructed in the way just described. To obtain a 

function f mapping U on a groupoid U(V), we put for every element z in U 

2. 

By comparing these results with 5.6, we easily see that for every relation 

algebra % the following two conditions are equivalent: 

(i’) Qf is isomorphic to the proper relation algebra constituted by all sub- 

relations of a non-empty equivalence relation V, and 

(ii’) is isomorphic to the complex algebra of a generalized Brandt groupoid 

U with the unicity property. 

As a consequence, we obtain by 5.8 that the complex algebra of an arbitrary 

generalized Brandt groupoid is isomorphic to a subalgebra of the complex 

algebra of a generalized Brandt groupoid with the unicity property. Hither 

with the help of this result or in a more direct way we conclude that every 

generalized Brandt groupoid U is a homomorphic image of a generalized 

Brandt groupoid 1’ with the unicity property. In fact, we can take for WW’ 

the system 11(V) defined above where V is the set of all couples <z, y> such 

that x,y, and x-y are elements in U. The function g defined for every 

couple <z, y> eV by the formula 

maps 11(V) homomorphically onto U. 

All these remarks remain valid if we replace in them arbitrary generalized 

Brandt groupoids by Brandt groupoids, and arbitrary equivalence relations 

by relations of the form V = W? where W is an arbitrary set. 

To conclude this section, we want to give some applications of our 

results to groups. A group may be considered as a system constituted by a 

non-empty set U, a binary operation - on U* to U, a distinguished element u 

of U (the unit or identity element), and a unary operation -* on U to U; 

the postulates which are to be satisfied by these notions are well known. 

We can, of course replace the element we U by a set J CU which is assumed 

to consist of just one element. Groups become then systems of the same 

type as Brandt groupoids, and we can state the following 

THEOREM 5.9. For 

Y= <U, 
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to be a group it is necessary and sufficient that U be a generalized Brandt 

groupoid in which + is an operation on U? to U. The condition remains 

necessary and sufficient if we omit in tt the word “ generalized.” 

Proof. The theorem easily follows from the definition of a group and 

that of a (generalized) Brandt groupoid. The only thing which is perhaps 

not quite obvious is that in a generalized Brandt groupoid in which - is an 

operation on U? (and not only on a subset of U*) to U the set I consists 

of just one element. To show this notice that J is non-empty by 5.1(v) 

and that, for any we have y by 5.2(i), and hence 

by 5.1(ii). 

THEOREM 5.10. The complex algebra of a group is a complete atomistic 

integral relation algebra in which every atom is a functional element.*+ 

Proof. By 4.16, 5.5(i), and 5.9, with the help of 3.2 and 3. 8. 

THEOREM 5.11. Let 

Y= <A, +; 0, 1, 

be an atomistic integral relation algebra in which every atom is a functional 

element. Let U be the set of all atoms of XM, and let 

U= <U, {1’}, 

We then have: 

(i) U is a group and & is isomorphic to a subalgebra of the complea 

algebra of U. 

(ii) If Mf ts complete, it is isomorphic to the complex algebra of U. 

Proof. By 4.17(i) (iv), 1’ is an atom. Hence {1} coincides with the 

set of all atoms u <= 1’, and therefore the system 1 defined in the hypothesis 

coincides with the system U of 5.6. Consequently, by 5.6(i), U is a 

generalized Braandt groupoid. By 4. 20, the operation ; in 11 is an operation 

on U? to U. Hence, by 5.9, U is a group. The remaining conclusions 

follow directly from 5.6(i} (ii). 

THEOREM 5.12. Let 

U=— <U, R, I, 8> 

be an algebra in the wider sense in which R C U*, ICU, and 8 CU*. If 

the complex algebra UX of U is an integral relation algebra in which every 

atom is a functional element, then U is a group. 

** This is a result of J. C. C. McKinsey; see Jénsson-Tarski [2]. 
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Proof. By 5.7%, WU is a generalized Brandt groupoid. From 4. 20, with 

the help of 3.2 and 3.8, we conclude that R is a binary operation on U? 

to U. The conclusion follows by 5. 9. 

Instead of assuming, in the hypothesis of 5.12, that % is integral and 

that every atom in %& is a functional element, it suffices to assume that 11 is 

an algebra, and not only an algebra in the wider sense. Even the (weaker) 

assumption that R is a binary operation on U? to U proves to be sufficient. 

Compare the analogous remark following 5. 7. 

The results stated in 5.10 and 5.11 can partly be extended to arbitrary 

Boolean algebras with operators and to complex algebras of arbitrary algebras 

(not in the wider sense). A Boolean algebra with operators 

in which 0 ~1 is called integral if, for each of the functions fe with the 

rank mg and for every sequence xe Az the formula f¢,2) —0 implies that 

2;==0 for some 7 << me. (In case Y& is a relation algebra with 0 1, this 

condition is automatically satisfied both by 1’ treated as an operation with 

the rank 0 and by Y, and has to be postulated only for ;.) The condition 

that %& is integral is clearly necessary for 2 to be isomorphic to the complex 

algebra of some algebra. This condition is, however, not sufficient. On the 

contrary, the following condition—when combined with completeness, atom- 

isticity, and the condition that 0 ~ 1—is necessary and sufficient for Y to be 

isomorphic to the complex algebra of some algebra: for each of the functions 

fe with the rank m¢ and for every sequence ze Us where U is the set of all 

atoms in % we have f¢(x) eV. It is seen from 4. 3(xii), 4.17(i) (iv), and 

4.20 that the latter condition, when applied to an atomistic relation algebra %, 

is equivalent to the one occurring in 5.10 and 5.11, i.e., to the condition 

that %f is integral and that every atom in & is a functional element. 

By 4.18(i) and 5.10, every relation algebra which is a subalgebra of 

the complex algebra of a group is integral. The question whether, conversely, 

every integral relation algebra is isomorphic to a subalgebra of the complex 

algebra of a group is still open. The answer is not known even for those 

integral algebras which are isomorphic to proper relation algebras. 
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A REMARK ON BOOLEAN ALGEBRAS WITH OPERATORS.* 

By Huco 

Bjarni Jonsson and Alfred Tarski, in their paper Boolean algebras with 

operators (78, 891 and 74, 127 of this JournAt), call a Boolean algebra B a 

regular subalgebra of a Boolean algebra A if A is complete and atomistic 

and B is a subalgebra of A for which: i) if J is an arbitrary set and if the 

elements z;¢ B with ie] are such that } 2;—1, then there exists a finite 
iel 

subset J of J such that } 2; —1, ii) if wu and v are distinct atoms of A then 
ied 

there exists an element 6 e B such that u = 6 and v- b = 0 (Definition 1.19). 

The set C of all “closed” elements of A is then defined as the set of all 

elements xe A such that [J] y (Definition 1.20); and A”, Bm, C™ 

designate the sets of all m-termed sequences, = <%,° *,%m-1>, of elements 

of A, B, C respectively. Furthermore, a function f on B” to B is called 

monotonic if given two sequences SyeB" (that is for any 

1=0,---,m—1) we always have f(x) Sf(y), additive if given any 

j<m and z,yeB” such that rp = yp whenever 7 4 p < m we always have 

=f(r) + f(y) (Definition 1.1); f*/C™ designates the restriction 

of the function f* to C™ and by the composition f[go,- - -,;9m-+] of f, on 

B" to B, with 9o,- - *;9m-+, on B” to B, it is understood the function h on 

B" to B such that h(x) = f(go(X),° whenever xe B". Finally, 

to any function f on B”™ to B an extension, f*, on A” to A is defined by 

f(z)=— > II f(z) for any xe A™ (Definition 2.1), and it is shown 
a=yeC™ ySzeBm 

(as an immediate consequence of Theorem 2.10) that if an equation involving 

additive functions on B” to B is identically satisfied, then the corresponding 

equation involving their extensions is also identically satisfied. Such a state- 

ment is also true (Theorem 2.11) of certain implications between two 

equations, and it yields several interesting results. 

The purpose of the present note is to give a direct proof of an extension 

of that Jénsson-Tarski’s Theorem 2.10. This extension (Theorem II) con- 

sists in getting the conclusion under a weaker hypothesis on the functions 

Jo." * *»9m-1, namely the monotonicity instead of membership in the set ¢. 

* Received March 31, 1950. 
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Otherwise our statement (Theorem II) is as Jénsson-Tarski’s Theorem 2. 10. 

(It must be pointed out that in that same paper it is also shown: Theorem 

2.10 does not hold with the hypothesis that f is monotonic even when 

Jos’ * *>Gm-1 are additive, and on the other hand, it holds whenever f is 

monotonic and 9o,°*-*,9m-.1 are “identity functions” (Theorem 2.9)). 

Throughout our proof we shall make free use of many of the terminology and 

notation in Jénsson-Tarski’s paper, and we shall continue to refer to its 

definitions and theorems by using the reference numbers therein.* 

THeoREM I. Let B=<Bo,+,0,-,1> be a regular subalgebra of a 

Boolean algebra A = <Ao,+,0,-,1> and let m and n be positive integers. 

Then, tf f is an additive function on B™ to B and go,- - +, Gm-+1 are monotonic 

functions on B" to B we have 

Proof. First we remark that f*/C™ is on C™ to C and g;*/C" (j =0, 
-++,;m—1) are on C" to C. The inclusion 

1) S (f[90,° 9m-+])* is easily checked: Using the 

definition of composition, 2.1 and 2.2, the hypothesis on f together with 

2.4, and then the remark that y°,- - -,y™*eC" implies 

+ C” together with the monotonicity of ft and g;* (j =0,- -,m—1), 

we have for every xe A” 

aay" 

ecn ecn 

By 2.2 the last sumis > II f(z) and it is included 

2 IL f(90(2),° since every factor of each product 
ySzeBr 

of this sum is a factor of the corresponding product of the above sum: f is 

monotonic, and <go*(y),° 5Jm-1*(Y)> S Gm-1(2)> B™ when- 

ever y < ze B" because of the monotonicity of (7 =0,---,m—1). Now 

1 The results of the present note were originated from and reported to Professor 

Tarski’s seminar on Topics in algebra and metamathematics at the University of 

California, Berkeley. ' 
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a=yeC" ySze Br 

ySzeBr 

by the definition of composition and then by 2.1. 

From this proof of 1) it follows that, for every xe C” such an inclusion 

holds even if f is monotonic not additive. In this case the sequence of 

equalities and inclusions yielding 1) will, essentially, begin after the first 

inclusion above, and there the additivity of f does not play any role. 

Next, we prove for f monotonic (not necessarily additive) the inclusion 

From the definition of composition, 2.1 and 2.2 it is clear that it will be 

sufficient to show that for every ye C” we have 

By 2.2 and, again by the definition of composition, this inclusion will be 

established, for any ye C”, if we prove that to each factor of 

f(z’) 

there is at least one factor of 9m+1(2’)) which is 
Bn 

included in it. 

Since f is monotonic it is now sufficient to show that to each 2 « B™ 

for which <go*(y),° 9ma*(y)> 7%, there is some 2” having the 

properties I) y= 2”, IL) <go(2"),° 

To do this let 2’= <2’9,: - +, 2ma>e€B™ and let us remark that, by 2. 2, 

our hypothesis means 

II gi(z) S7jeB -++,m—l1). 
e Bn 

First, we have that for any 7 =0,---,m—1 there is 2’j ¢ B" such that at 

same time y= 2”) and g;(z”"4) = 7;. This is true since 2; being open and 

including a product of closed elements, it will include (by 1.21, (iv)) some 
rj 

finite product [J g;(z*) of such closed (and open) factors: 
k=0 

rj 

TI 9j(2*) S 2; 
k=0 

rj 

with yS 2*eB". Now, putting 2’) = 2*, we will have not only yS eB 
k=0 
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rj 

but also since g;(2’/) [] 9;(2*) because of the monotonicity 
k=0 

m-1 

of g; As second and final step it is easily seen that poe is an 

element of B” having the properties I) and II) above: y= 2” since y Sz 

for every =0,---,m—1; and g;(2’) = 2; for every - -,m—1, 

since g; being monotonic we have g;(2”) 

The proof of 2) is now complete. From 1) and 2) the theorem follows. 

Remark. As a consequence of the preceding proof of 2) and of the 

comment at the end of the proof of 1) we have 

are monotonic and ye whenever f, 

THEOREM II. Let B=<Bo,+,0,-,1> be a regular subalgebra of 

a Boolean algebra A =<Ao,+,0,-,1>, let m and n be positive integers 

and let & be the smallest set having the two properties: 

i) to include all additive functions on Bt to B for any t (integer positive) 

ii) to be closed in respect to the operation of composition (of functions). 

Then, if Jo,* * *s9m-1 are monotonic functions on B” to B and fed is 

a function on B™ to B, we have 

(F[9o, ° i = f*[Qo*,° 

Proof. Remark first that the operation of composition is associative 

and that for a function f on B”™ to B to verify the hypothesis it is necessary 

(and sufficient) that non negative integers k and ry +, exist 

|. 

such that 
f= ho [ hy,*] [ho*, h,,*] 

for some additive functions h* (7 —0,---,rx) on B” to B and hj 

(t=—0,---,k—1;7=—0,:--,7%) on B to B. 

Put h =h,°. If we have k —0 in the equality above, then f is just the 

additive function h, and we have the desired conclusion from Theorem I. 

We prove by induction for k~0. Putting 

hy 
we have 

° (j =0,- * +, 11) 
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as induction hypothesis. On the other hand, since f’; and also f’;[9o,°--, Gm] 

(j =0,°--,7:) are monotonic and h is additive, we have 

and also 

by Theorem I. Hence, 

Thus Theorem II is proved. 

UNIVERSITY OF CALIFORNIA, 

BERKELEY, CALIFORNIA. 



CRITERES DE COMPACITE DANS LES ESPACES FONCTIONNELS 

GENERAUX.* 

By A. GROTHENDIECK. 

1. Introduction. Outre la notion usuelle de compacité (cf. N. Bour- 

baki [1]), qui est apparue come étant la seule qui soit vraiment fonda- 

mentale, on rencontre néanmoins au moins deux autres notions étroitement 

apparentées, mais de “caractére dénombrable,” et qui se sont révélées 

indispensables dans plusieurs questions qui a priori n’impliquent aucune 

considération de dénombrabilité. 

Nous dirons qu’une partie A d’un espace topologique est relativement 

semi-compacte (resp. semi-compacte) si toute suite extraite de A admet une 

valeur d’adhérence (resp. qui appartienne a A). A sera dite strictement 

relativement semi-compacte (resp. strictement semi-compacte) si de toute 

suite extraite de A on peut extraire une suite converge (resp. qui converge 

vers un élément de A). 

Dans le présent travail, nous étudions des cas étendus ot la semi-com- 

pacité relative entraine déja la compacité relative ou la stricte semi-compacité 

relative. Nous nous y placgons surtout dans des espaces du type Ce(E£, F), 

espace des applications continues d’un espace topologique E dans un espace 

uniforme séparé F', muni de la topologie de la convergence uniforme sur un 

ensemble © de parties de H recouvrant H (pour ces notions fondamentales 

d’Analyse Fonctionnelle, cf. N. Bourbaki [3]). Les résultats obtenus valent 

manifestement pour les sous-espaces fermés de tels espaces, ce qui permet de 

les appliquer a des espaces vectoriels localement convexes généraux. 

Dans 2, nous donnons quelques généralités sur les diverses notions de 

compacité envisagées, destinées surtout 4 prémunir le lecteur contre certaines 

* Received December 27, 1950. 

1Qutre le théoréme 5 et la proposition 7 du présent travail, citons notamment 

encore deux propositions s’appuyant de fagon essentielle sur le théoréme d’Eberlein 

(cf. proposition 2 ci-dessous): 1) l’enveloppe convexe fermée d’une partie faiblement 

relativement compacte d’un espace de Banach (par exemple) est faiblement compacte; 

2) Le produit de deux fonctions faiblement presque-périodiques sur un semi-groupe est 

faiblement presque-périodique (cf. [6]) ; plus généralement, si H est une algébre normée 

compléte s’identifiant 4 l’espace des fonctions complexes continues sur un espace compact, 

le produit de deux parties faiblement compactes A et B de E (ensemble des zy avec 

weA et ye B)est faiblement relativement compact. 
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erreurs assez naturelles, plutét que de repéter les développements bien connus 

et triviaux sur le sujet (tels que: l’image continue d’un espace semi-compact 

est semi-compact, etc.). Dans 3. nous étudions des cas ot: la semi-compacité 

relative entraine la compacité relative, le resultat le plus important est le 

théoréme 2 (et le théoréme 1 qui est un corollaire) ; nous y donnons en méme 

temps un critére de compacité relative qui semble a priori encore bien plus 

faible que la semi-compacité relative. En outre, M. J. Dieudonné a bien 

-voulu me communiquer un autre cas non trivial et trés simple ou la semi- 

compacité relative entraine la compacité relative (théoréme 3), critére qui ne 

sera pas essentiel par la suite mais a son intérét propre dans l’ordre d’idées 

de ce travail. Dans 4, nous appliquons les résultats obtenus aux espaces locale- 

ment convexes, en donnant notamment 4 un classique théoréme d’Eberlein pour 

les espaces de Banach (généralisé par J. Dieudonné et L. Schwartz [5] aux 

espaces (%})) toute la généralité qui lui appartient. (Ce théoréme a été 

@ailleurs le point de départ du présent travail). Dans 5. nous établissons 

un cas non classique ou la semi-compacité relative entraine la stricte semi- 

compacité relative (th. 4); ce résultat est d’ailleurs essentiel pour la suite 

(th. 5) ; la proposition 5 se réduit 4 une systématisation de réflexions classiques. 

Nous appliquons ensuite les resultats précédents 4 la détermination des parties 

faiblement relativement compactes de l’espace de Banach C%(#) de toutes les 

fonctions continues et bornées sur un espace topologique H; le critére obtenu 

donne par exemple immédiatement le résultat suivant. Une fonction faible- 

ment presque périodique a gauche sur un semi-groupe est aussi faiblement 

presque périodique a droite. Enfin dans 7%. nous généralisons le théoréme 6 

pour obtenir dans les espaces localement convexes un critére de relative com- 

pacité faible, approfondissant de beaucoup les résultats de 4, et qui ne semble 

pas connu méme pour les espaces de Banach. 

2. Généralités. I] n’est peut-étre pas inutile de rappeler quelles 

implications on peut ou ne peut pas affirmer entre les diverses notions de 

compacité envisagées, et quelles simplifications se produisent dans quelques 

cas classiques. Il est évident que la compacité et la semi-compacité stricte 

entrainent chacune la semi-compacité, de méme pour les notions “ relatives ” 

correspondantes. Mais on n’a dans le cas général aucune autre implication 

entre ces trois couples de notions, car il est bien connu qu’un espace stricte- 

ment semi-compact peut étre non compact (exemple: espace des nombres 

ordinaux de seconde classe, avec la topologie usuelle) et un espace compact 

peut ne pas étre strictement semi-compact (exemple: produit topologique d’une 

famille non dénombrable d’intervalles compacts).—D’autre part, il est évident 
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que chacune des trois notions de compacité entraine la notion “ relative ” 

correspondante, et que la réciproque est tout 4 fait fausse. On fera attention 

ici que pour qu’une partie A d’un espace F soit relativement compacte, il faut et 

il suffit par définition que son adhérence soit compacte, mais qu’il n’est est plus 

de méme pour la semi-compacité relative et la stricte semi-compacité relative. 

La condition est évidemment encore suffisante, mais on peut trouver une 

partie A strictement semi-compacte d’un espace séparé EF, dont l’adhérence 

ne soit pas méme semi-compacte. En d’autres termes, il existe un espace 

séparé non semi-compact F dans lequel une partie strictement semi-compacte 

A soit dense. Soit en effet X un espace séparé qui soit strictement semi- 

compact et localement compact mais non compact (par exemple l’espace des 

nombres ordinaux de seconde classe), a son “ point 4 l’infini,” Y = X U(a). 

Pour tout entier naturel n, soit Y, un exemplaire homéomorphe de Y (X, 

correspondant a X et a, a a); supposons les Y, disjoints et soit b un élément 

qui n’appartienne 4 aucun des Y,. Sur l’ensemble H = (b)U LU Yn, con- 
n 

sidérons la topologie dont les ouverts sont les parties qui coupent chaque Y, 

suivant un ouvert, et qui, s’ils contiennent 6, contiennent aussi les XY, a partir 

d’un rang assez élevé. On vérifie trivialement les axiomes des ouverts (Bour- 

baki (1)), et que H# est séparé; H n’est pas semi-compact, car il est manifeste 

que la suite (a,)» n’a pas de point adhérent. D’autre part, A = (b)U U &, 

est partout dense et strictement semi-compact, comme on vérifie aussitdt. 

Rappelons enfin que dans un espace métrique, les trois notions de com- 

pacité sont équivalentes, ainsi que les notions “ relatives ” correspondantes. 

Un autre résultat intéressant, qui nous sera utile par la suite, est le théoréme 

d’A. Weil [10]; une partie relativement semi-compacte d’un espace uniforme 

séparé est précompacte. En particulier, dans un espace uniforme séparé et 

complet, compacité (relative) et semi-compacité (relative) sont la méme chose. 

La topologie faible d’un espace de Banach ou d’un espace localement 

convexe quelconque est un exemple d’un topologie en général ni compléte ni 

métrisable, et ou les critéres de relative compacité qu’on vient de rappeler ne 

s’appliquent pas tels quels. Plus généralement, il en est ainsi dans les espaces 

d’applications continues d’un espace topologique dans un autre, muni de la 

topologie de la convergence simple par exemple. Pourtant un théoréme d’Eber- 

lein pour les espaces de Banach, et les résultats de G. Kéthe sur ses “ espaces 

parfaits” (cf. G. Kéthe [8]) montrent que dans ces espaces, munis de la 

topologie faible, on a encore identité entre parties relativement semi-compactes 

et relativement compactes. D’autre part, dans les espaces de Banach encore, 

un théoréme de Smulian (généralisé aux espaces (%) dans [5]) affirme 

i
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Videntité pour la topologie faible entre parties strictement relativement semi- 

compactes et parties relativement compactes. Ce sont ces résultats qui nous 

ont guidé et que nous allons généraliser et préciser. 

3. Semi-compacité et compacité. Soit H un espace topologique, / un 

espace uniforme séparé; nous désignons par C(H, F) Vespace des applications 

continues de dans F, par Vespace de toutes les applications de 

dans F, et, si S est un ensemble de parties de F, par Te la structure uniforme 

sur C(Z,F) et §(#,F) de la convergence uniforme sur les éléments de © 

(cf. [3]) ; munis de cette structure les espaces précédents seronts désignés par 

Cs(H, F) resp. PF). Si F est séparé et si recouvre (ce que nous 

supposons par la suite) ces espaces sont séparés, et si de plus F est complet, 

il en est méme de %e(H,F), mais en général Ce(H, F) n’est pas complet. 

On vérifie aussitét que si un filtre de Cauchy dans }¢(H, F) converge pour 

la topologie de la convergence simple, il converge pour Xe, d’ou suit que pour 

qu’une partie A de Ce(H#,F) ait une adhérence compléte dans cet espace, 

il faut et il suffit que tout filtre de Cauchy sur A converge en chaque point 

vers une application continue de E dans Ff. Alors l’adhérence A de A pour 

Ye sera 4 fortiori compléte pour toute Te, avec S’ DS. En particulier si 

A a une adhérence compléte dans l’espace (;(H, F) muni de la structure Z, 

de la convergence simple, il en sera de méme a fortiori pour toute T>. A 

fortiori, si A est relativement compacte dans C,(Z, ’), ’adhérence de A dans 

Ce(E,F) est compléte quel que soit l’ensemble de parties ©. 

Enfin, remarquons encore que le théoréme de Tychonoff donne immé- 

diatement: Pour qu’une partie de C,(£,/) soit relativement compacte, il 

faut et il suffit que 1°) elle le soit dans le produit topologique §,(F, F), 

c’est-a-dire que pour tout xe LH, l’ensemble des f(x), ot fe A, soit relative- 

ment compact dans F’; et 2°) que l’adhérence de A dans C,(F,F) soit la 

méme que dans %,(, /’), c’est-a-dire que toute application de # dans F qui 

est limite simple d’applications éléments de A, soit continue. 

Ces remarques interviennent dans diverses questions d’Analyse Fonc- 

tionnelle, et seront essentielles pour la compréhension de la suite. 

THEOoREME 1. Soit HL wn espace semi-compact, F un espace untforme 

séparé, © un ensemble de parties de E recouvrant E. Si dans F toute partie 

relativement semi-compacte est relativement compacte (en particulier, si F 

est complet), alors il en est de méme dans l’espace Ce (EL, F). 

Toute partie relativement semi-compacte A de Ce(£, F’) est précompacte 

(cf. ci-dessus 2.) ; if suffit de montrer que son adhérence est complete, et a 

3 
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fortiori, d’aprés nos remarques précédentes, que A est relativement compact 

pour la topologie de la convergence simple. Comme A est évidemment rela- 

tivement semi-compact pour cette derniére topologie (puisque © recouvre /) 

on est ramené au cas de la topologie Zs. Mais ce cas est inclus dans le 

théoréme-clef suivant: 

THEOREME 2. Soit EF wn espace semi-compact, F un espace completement 

régulier, A une partie de C,(H,F), LH, une partie dense de E. 

1°) Si dans F toute partie relativement semi-compacte est relativement 

compacte, alors les conditions suivantes sur A sont toutes équivalentes: 

a) A est relativement compact ; 

b) A est relativement semi-compact ; 

c) pour toute suite (fn) extraite de A et toute suite (2) extraite de Hy, 

il existe une application continue f de lVadhérence K de Vensemble des x; 

dans F, telle que pour tout xe K, f(x) soit adhérent a la suite des f,(x). Et 

pour tout ce lensemble des f(x) avec feA est relativement semi- 

compact ; 

d) pour toute suite (fn) extraite de A et toute suite (2;) extraite de Fy, 

al existe un Xe F qui soit point doublement adhérent a la suite double 

(fn(zi)) (par quot nous entendons que tout voisinage de X rencontre une 

infimté de lignes et une infinité de colonnes de la suite double chacune en 

une infinité de termes). Et pour tout re ensemble des f(x) avec 

est relativement semt-compact. 

2°) De toutes fagons (sans plus faire sur F la restriction de la premiére 

partie de l’énoncé) chacune des conditions qui précédent est suffisante pour 

assurer que toute application de EF dans F qui est limite simple d’applications 

éléments de A est continue; les deuxiémes parties des conditions c) et d) 

peuvent étre omises. 

Enfin, moyennant la premiére partie de la condition d), méme st on ne 

suppose plus que EH est semi-compact, toute application de E dans F qui est 

limite simple d’applications éléments de A est continue. 

Démonstration. On a de toutes facons manifestement a)—b)—c); 

montrons que si H est semi-compact, c) entraine d) ; il suffit de montrer que 

la premiére partie de la condition c) entraine la premiére partie de la con- 

dition d). Soit en effet, avec les notations de d), ze H adhérent 4 la suite 

(2) et soit f application stipulée dans c), relative aux suites (2;) et (fn); 

je dis que f(z.) est doublement adhérent a la suite double (f,(2z;)). En effet, 

| 
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s'il existait un voisinage ouvert V de f(x) tel que sauf pour un nombre fini 

d’indices i l’on ait GV pour n= n(i),” on aurait,, sauf pour un 

nombre fini d’indices: f(z;) V, f(z.) e CV ce qui est absurde; et s'il 

existait un voisinage ouvert V de f(x.) tel que sauf pour un nombre fini 

d’indices n l’on ait eGV pour i=i,(n),” on aurait sauf pour un 

nombre fini d’indices f,(ao) V, d’ou f(z) V, ce qui est encore absurde.— 

Pour prouver la premiére partie du théoréme, tout revient done 4 prouver 

que d) entraine a). Mais de d) resulte manifestement que pour tout ce HK 

Vensemble des f(x), avec fe A est une partie relativement semi-compacte de 

F, done relativement compacte en vertu de l’hypothése sur F. En tenant 

compte d’une remarque faite plus haut, tout revient donc a montrer que 

toute application de # dans F qui est limite simple d’applications éléments 

de A est continue. Cela est inclus dans la deuxiéme partie du théoréme, 

cette deuxiéme partie revenant manifestament 4 prouver que si # est un 

espace topologique quelconque, et / complétement régulier, alors la premiére 

condition énoncée dans d) est suffisante pour assurer que toute application f 

de EF dans /’ qui est limite simple d’applications éléments de A est continue 

désignant une partie dense dans 

F étant complément régulier, sa topologie peut étre considérée comme la 

moins fine de celles qui rendent continues certaines fonctions numériques ¢; 

sur I” ([2], page 11, proposition 4). On voit alors qu’on peut se ramener 

au cas oul J’ est la droite numérique, la continuité de f équivalant en effet a 

la continuité de chacun des fonctions numériques ¢;°f sur EF (d’autre part 

¢:°f est limite simple de fonctions ¢;° g ot g parcourt A, et l’ensemble de 

ces ¢;°g jouit manifestement des propriétés envisagées pour A lui-méme). 

Supposons done que /’ soit la droite numérique; on sait que pour démontrer la 

continuité de f, il suffit de montrer que l’on a limf(x) —f(2,.) pour tout 

aoe H ({1] page 38, th. 1). Nous démontrerons cette relation par l’absurde, 

en reprenant une idée d’Eberlein. Supposons done qu’il existe un 2 ¢ # et un 

a> 0 tels que pour tout voisinage V de 2, il existe un tre VN EF, tel que 

| f(x) —f(a.)| =a. On pourrait alors par récurrence construire deux suites 

@éléments de A et de H, respectivement, (f;) et telles que ait 

(on suppose les suites construites déja jusqu’aux termes de rang n—1): 

a) | fn(vi) —f(ai)| S1/n (0SiSn—1) (cela est possible, f étant 

limite simple d’éléments de A). 

b) fi(an) S1/n (OSiSn). 

c) f — f(a)| =a (ce que est encore possible par hypothése). 

a 

id 
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Il existe un point z doublement adhérent a la suite double (f;(z;)), et comme 

pour 7 constant la suite (fn(zi)) tend vers f(az;) en vertu de a) et la suite 

(fi(tn)) vers fi(ao) en vertu de b), z est adhérent a chancune des suites 

(f(2n)) et (fn(%o)). Or, en vertu de la premiére des inégalités a), la deuxiéme 

suite tend vers f(z»); on a donc z =f (2), et f(x) serait valeur d’adhérence 

de la premiére suite, contrairement aux inégalités c). CQFD. 

CoroLuAIRE 1. L’énoncé du théoréme 1 reste valable st on suppose F 

localement compact, ou métrique, et plus généralement si toute application 

de EF dans F dont les restrictions aux parties semi-compactes de E sont 

continues, est continue. 

En effet, on se raméne évidemment 4 montrer que si A est relativement 

semi-compact pour la topologie de la convergence simple, toute limite simple 

d’applications éléments de A est continue, ce qui est déja une conséquence du 

théoréme 1. 

Remarque 1. La démonstration du théoréme 2 met en évidence que 3i 

on suppose la topologie de / définie comme la moins fine des topologies 

rendant continues certaines applications ¢; de F’ dans des espaces compleéte- 

ment réguliers F;, alors les critéres énoncés dans le théoréme 2 équivalent 4 

ceux qu’on en déduit en supposant que les hypothéses envisagées sont vérifiées, 

non pour A lui-méme a priori, mais pour chacun des ensembles A;CC(E£, F;) 

(ot pour tout 7, on désigne par A; l’ensemble des ¢,°f ot f parcourt A). 

Remarque 2. Supposons que la suite double (2) prenne ses valeurs 

dans un espace métrique F’, et y soit relativement compacte. Alors on vérifie 

que la non-existence d’un point doublement adhérent 4 la suite double 

implique l’existence d’une “suite double extraite ” (iajg) = (Yap), telle que 

lim. — Yop et . lim. ¥ag existent tous deux et soient distincts. En effet, 

Vapplication du procédé diagonal permet de construire une suite d’indices (i,) 

telle que lim. zi; existe pour tout 7. Une seconde application du procédé 

diagonal siaauee d’obtenir une suite d’indices 7g telle que lim. 2;,,;, existe pour 

tout 1,, et que lim. (lim. 2;,,;,) existe. Enfin on peut eames en extrayant 

encore au partielle de la suite (ix), que 

existe. Mais les deux limites doubles lim. (lim. 2,,;,) et lim. (lim. 2;,,j,) ne 
a B B a 

peuvent étre égales, car leur valeur commune serait manifestement un point 

doublement adhérent a la suite double (2i,,;,). 

D’autre part, une suite double telle que lim. (lim. 2;,;) et lim. (lim. 2%) 
i j j i 
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existent et soient distincts n’a manifestement pas de point doublement adhérent 

(car un tel point devrait étre identique 4 chacune de ces limites doubles). 

I] suit le 

CoROLLAIRE 2. Soit FE un espace semi-compact, F un espace métrique, 

A un ensemble dapplications continues de E dans F tel que Vensemble des 

f(x) ow fe A et xe LH, sort relativement compact. Pour que A sott relative- 

ment compact dans C;(E, F), il faut et al suffit qwil n’existe pas de suite (2;) 

extraite de E et de suite (f;) extraite de A, telles que lim. lim. f;(a%) et 

lim. lim. f;(z;) existent tous deux et sotent distincts. La condition subsiste 
j 4 

si on assujettit la suite (xi) a étre extraite d’une partie partout dense fixe E, 

de E. Et cette condition reste suffisante pour assurer que A est relativement 

compact, méme si EH nest plus supposé semi-compact. 

De la démonstration du théoréme 2, ou du théoréme 2 directement, on 

déduit immédiatement le résultat suivant: 

Proposition 1. Soit EH wn espace semi-compact, E un espace complete- 

ment régulier, A une partie relativement compacte de lespace C,(H,F). Alors 

A est encore relativement compact dans Vespace C,(#,F), ou E est Vespace 

obtenu en munissant E de la topologie la moins fine rendant continues les 

applications éléments de A. En particulier, toute application f de EF dans F 

que est limite simple @applications éléments de A, est encore continue au 

sens de la topologie de ff (c’est a dire que, pour tout ze # et tout voisinage 

V de f(a) dans F, il existe un nombre fini d’éléments f,¢ A et des ouverts 

Q; dans tels que © Q; pour tout 1, et que fi(x) Q; pour tout 

entraine f(x) e V.? 

Signalons pour étre complet un autre cas intéressant et non classique ou 

la semi-compacité relative entraine la compacité relative, qui m’a été signalé 

par M. J. Dieudonné: 

THEOREME 3. Soit HE un espace completement régulier dont la topologie 

X soit plus fine qu’une certaine topologie métrisable X. Alors dans E les 

parties (relativement) compactes, (relativement) semi-compactes et (relatie- 

ment) strictement semi-compactes sont identiques, et leur topologie métrisable. 

* En fait, cet énoncé est loin d’étre profond, du moins si H est compact. On peut 

en effet montrer alors par voie directe le résultat bien moins restrictif: Si H est compact, 
F un espace topologique séparé quelconque, A un ensemble quelconque d’applications 

continues de H# dans F, alors toute application continue de EF dans F qui est limite 

simple d’applications éléments de A, est déja continue quand on munit H de la topologie 

la moins fine rendant continues les applications éléments de A. 

g 
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Il suffit de montrer que toute partie relativement semi-compacte A est 

relativement compacte. Car alors, son adhérence A étant compacte et la 

topologie induite par ZT sur A étant séparée et moins fine que celle induite 

par &, elle doit lui étre identique, d’ou suit que A est métrisable et strictement 

semi-compact. Tout revient donc a montrer que tout ultra-filtre @ sur A 

converge vers quelque z,¢H. Mais A étant aussi relativement semi-compact 

pour Z, qui est métrisable, A est relativement compact pour Zp, done ¢ 

converge pour Z vers un 2 eH. Tout revient 4 montrer que la conver- 

gence a lieu aussi au sens de &, donc (cf. [2] p. 11, proposition 9) que pour 

toute fonction numérique continue f sur H, f(x) converge vers f(x) suivant 

le filtre ¢. Soit ZX, la topologie la moins fine sur / rendant continues f et 

Vapplication identique de # sur F muni de Xo, cette topologie est métrisable, 

plus fine que Z et moins fine que &. A est done aussi relativement semi- 

compact pour &;, donc relativement compact pour cette topologie, ¢ tend done 

vers une limite ye # au sens de %;, et on a forcément y =z, puisque Z, est 

plus fine que Z. I] suit bien que f(z) tend vers f(a») suivant le filtre ¢, 

CQFD. 

CoroLLArIRE. Soit HL un espace topologique, F un espace métrique, © un 

ensemble de parties de E recouvrant Supposons qu il existe une suite 

densembles éléments de © dont la réunion soit partout dense dans EF (en 

particulier, tl suffit qu'il existe dans E une suite partout dense). Alors dans 

Co(E, F) les parties (relativement) compactes, (relatwement) semi-compactes 

et (relativement) strictement semi-compactes sont identiques. 

Remarquons que le théoréme 3 aurait pu se démontrer aussi rapidement 

sans l’aide des ultra-filtres, en montrant directement que sur l’adhérence des 

parties relativement semi-compactes, les topologies T et XZ sont identiques. 

Mais la méthode employée montre plus généralement que si on considére un 

ensemble de topologies & sur H ot les parties (relativement) semi-compactes 

soient (relativement) compactes, et si cette famille de topologies admet un 

plus petit élément Z, séparé, alors la borne supériere © — Sup. F; satisfait 

a la méme hypothése que les 3. k 

4. Appplications aux espaces vectoriels localement convexes. Les 

théorémes 1 et 2 s’appliquent aux sous-espaces fermés d’espaces Ce(L, F). 

De maniére générale, V’application du théoréme 1 peut se présenter ainsi: 

On donne un ensemble B d’applications d’un ensemble H# dans un espace 

uniforme séparé F dont les parties relativement semi-compactes soient relative- 

ment compactes, examiner s’il en est de méme dans B muni d’une topologie 
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Ye. On pourra l’affirmer dés qu’on aura trouvé sur F£, pour toute partie 

relativement semi-compacte A de B, une topologie rendant continues les 

applications éléments de A, et assez peu fine pour que toute application de 

E dans F dont les restrictions aux parties semi-compactes de # sont continues, 

et qui soit par ailleurs limite au sens de T@ d’applications éléments de A, 

soit élément de B. Remarque analogue pour l’application du théoréme 2, 

quand Xe est la topologie de la convergence simple, mais alors on a intérét 

4 prendre sur # une topologie aussi fine que possible donnant encore suffisam- 

ment de parties semi-compactes pour que toute application de # dans F dont 

les restrictions 4 ces parties sont continues (et de plus limite simple d’élé- 

ments de A) soit continue. Ces deux considérations se reflétent exactement 

dans les deux propositions qui vont suivre. 

Si # est un espace vectoriel localement convexe séparé, il peut étre con- 

sidéré comme l’espace des formes linéaires continues sur son dual faible ZH’, 

muni d’une topologie Te (théoréme de Mackey, cf. [9] et [5]) © étant un 

ensemble de parties convexes et faiblement compactes recouvrant E’. D’autre 

part on peut montrer ([7]) que si # est complet, tout forme linéaire sur H’ 

dont les restrictions aux éléments de S sont continues, est faiblement continue, 

cest a dire élément de #. Comme par ailleurs toute limite simple d’applica- 

tions linéaires est linéaire, on obtient en premier lieu la généralisation du 

théoréme d’Eberlein annoncée au début: 

PROPOSITION 2. Si E est un espace localement convexe séparé complet 

ou seulement complet pour la topologie r(E, E’) de Mackey associée, (cf. [5] 

et [9]) ses parties relativement semi-compactes et relativement compactes 

sont identiques (et ceci d’ailleurs manifestement pour toute topologie locale- 

ment convexe sur # donnant le méme dual). 

En second lieu, on a le résultat 

PROPOSITION 3. a) Sous les conditions de la proposition précédente, pour 

quune partie A de E soit faiblement relativement compacte, il faut et il suffit 

quelle soit bornée, et qu'il n’existe pas de suite (x;) extraite de A et de suite 

(2’;) extraite d’une partie faiblement compacte convexe de KE’, telles que 

lim. lim. e¢ lim. lim. existent et soient distincts. 
j 

b) Plus généralement, soit (K) une famille de parties convexes de E’, 

relativement faiblement compactes (et non forcément fermées), telle que la 

famille des adhérences faibles K, engendre algébriquement E’, et que E soit 

complet pour la topologie de la convergence uniforme sur les K,. Alors le 
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critére précédent de relative faible compacité de A subsiste, si on assujettit la 

suite (x’;) a étre extraite de quelque Kg. 

Remarque 3. On voit facilement que les propositions précédentes valent 

encore si on suppose non pas / complet, mais seulement ses parties bornées et 

fermées complétes (il suffit de passer au complété de E pour la topologie 

donnée ou la topologie +(H,H’)). De fagon plus générale encore, les pro- 

positions 2 et 3 valent pour une partie particuliére A de F, dés qu’on sait que 

Venveloppe convexe fermée de A est compléte (ne fiit-ce que pour 7(£, E’) 

lorsqu’il s’agit de proposition 2 ou proposition 3a)).—Comme toute partie 

faiblement compacte de EF est forcément compléte pour les topologies en- 

visagées, il ne semble pas raisonnable d’espérer généraliser encore ces derniers 

résultats (mais nous approfondirons encore considérablement la proposition 2 

par le théoréme 7 plus bas). 

Il est d’ailleurs facile de construire un espace vectoriel non complet, 

hyperplan fortement fermé d’un dual faible d’un espace de Banach par exemple, 

dans lequel il y ait des parties semi-compactes non relativement compactes. 

Soit en effet © un espace localement compact et semi-compact, mais non 

compact (par exemple l’espace des nombres ordinaux de seconde classe), soit 

© l’espace compact obtenu par adjonction du “point a Vinfini” w. Soit F 

Vespace des fonctions complexes continues sur ©, muni de la norme de la 

convergence uniforme, EZ’ son dual (espace des mesures de Radon sur 2). 

Si on identifie tout point de & avec la mass + 1 placée en ce point, la 

topologie de © s’identifie 4 la topologie induite par la topologie faible de L’. 

Il est manifeste que @ n’appartient pas au sous-espace fortement fermé 

engendré par © (sa distance 4 ce dernier est égale 4 1), il existe donc un 

hyperplan fortement fermé V de £’ contenant 2 et non w. Dans cet espace 

(muni de la topologie faible), Q est semi-compact et non faiblement relative- 

ment compact. 

La proposition 3 donne un critére pour qu’une suite de EF converge 

faiblement; il faut et il suffit en effet qu’elle soit faiblement relativement 

compacte, et qu’elle converge sur une partie totale HE’, de E’ (car sur une 

partie faiblement compacte de £, la topologie o(£, E’) coincide forcément 

avec la topologie séparée moins fine o(/#, Z’,)). Nous ne donnons pas ]’énoncé 

explicite, qui de toutes facgons pourra beaucoup s’améliorer plus bas. Mais 

donnons une application immédiate de la proposition 3b), due a ce que le 

bidual EZ” d’un espace F (cf. [5]) est engendré par les adhérences faibles 

des parties bornées de F: 

Proposition 4. Soit E un espace localement convere, E’ son dual fort 
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(cf. [5]) supposé complet, E” le dual de Ek’ fort. Pour qu'une partie A de E’ 

soit relativement compacte pour o(E’, KH”) il faut et il suffit qu'elle soit forte- 

ment bornée, et qu'il n’existe pas de suite bornée (2;) extraite de E et de suite 

(2’;) extraite de A, telles que lim. <xi, et lim. <a, 2’j> existent 

et soient distincts. 

Ici encore, il suffit de supposer seulement que les parties fermées et bornées 

de EH’ fort sont complétes. Et on a encore un critére correspondant pour 

qu’une suite dans HL” converge pour o(H’, H”): il faut et il suffit qu’elle soit 

relativement compacte pour cette topologie, et qu’elle converge sur une partie 

totale de H.—Noter que si on suppose A faiblement relativement compact, 

il est inutile de supposer H’ fort complet (car l’adhérence forte de A sera 

déja complete). 

5. Critéres de semi-compacité stricte. Soit de nouveau H un espace 

topologique, F un espace uniforme séparé, © un ensemble de parties de H 

recouvrant H. Pour qu’un filtre sur une partie relatwwement compacte A de 

Ce(£,F) converge, il faut et il suffit qu’il converge en chaque point d’une 

partie partout dense H, de H (puisque la topologie de la convergence simple 

sur H, est encore séparée sur C(H, F), et moins fine que la topologie Ze). 

Si on suppose seulement A relativement semi-compact, la conclusion subsiste 

a condition de se borner aux filtres définis par des suttes (fn). En effet, cette 

suite ne peut avoir dans C¢(H,F) qu’une seule valeur d’adhérence, (définie 

par ses valeurs sur #,), et d’autre part on vérifie immédiatement que dans 

une partie relativement semi-compacte d’un espace topologique séparé C, les 

suites convergentes sont précisément celles qui ont un seul point adhérent. 

PROPOSITION 5. Soit EH un espace topologique, F un espace umforme 

séparé, © un ensemble de parties de EF recouvrant LE. Supposons qu'il existe 

une suite (H;) de parties de FE, dont la réunion soit partout dense, et telle 

que dans chacun des espaces Ce,(Fi, F) (Gi désignant la trace de S sur E;), 

la (semi-)compacité relative d’une partie de Vespace entraine sa stricte semi- 

compacité relative. Alors il en est de méme dans Ce(E, F). 

Soit en effet (fn) une suite relativement (semi-)compacte dans Ce(F, F). 

Pour tout i, la suite des restrictions des f, 4 H; forme alors une suite relative- 

ment (semi-)compacte dans C6,(Hi, /), ce qui permet par hypothése d’extraire 

de (fn) une suite dont les restrictions 4 H; convergent dans C¢,(Ei,F). Par 

le procédé diagonal, on peut. alors extraire de (f,) une suite telle que pour 

tout i, la suite des restrictions 4 FH; converge dans Ce,(Hi,F). Cette suite 
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converge en particulier en chacun des points de ) Fi, qui est dense dans £, 
i 

dot resulte qu’elle converge dans Ce(E,F) en vertu de nos remarques 
préliminaires. 

Une partie du corolllaire du théoréme 3 est contenu dans la proposition 

précédente (savoir que dans C¢(L, /’), la semi-compacité relative entraine la 

stricte semi-compacité relative, sous les hypotheses spécifiées dans ce corollaire). 

La partie la plus profonde du corollaire en question échappe pourtant a la 

proposition 5, en revanche nous avons le 

CoroLuaIRE. Si E contient une suite partout dense, et si dans F toute 

partie relativement (semi-)compacte est strictement semt-compacte, alors 11 

en est de méme dans Ce (FE, F). 

Mais on notera que quelque simple que soit l’espace F' (par exemple le 

segment compact (0,1)), pour avoir des résultats dans le genre du précédent, 

il faut faire quelque hypothése sur le couple (#,©@). Ainsi, si # est un espace 

discret non dénombrable, et / = (0,1) on sait bien que le produit topologique 

C,(E£, F) est compact, mais non strictement semi-compact.—I] est tout aussi 

évident que la moindre des choses qu’il faille supposer sur F pour avoir un 

résultat, c’est que dans F lui-méme toute partie relativement compacte soit 

strictement relativement semi-compacte. 

Le théoréme suivant tire son intérét du fait qu’il ne fait intervenir 

aucune condition de dénombrabilité sur l’espace EH lui-méme: 

THEOREME 4. Soit EF un espace compact, F un espace uniforme sépare, 

S un ensemble de parties de E recouvrant FE, A une partie de Ce(L, F) 

relatiwement semi-compacte. Supposons de plus que pour toute fe A, le sous- 

espace f(H) de F ait une topologie métrisable (1 suffit donc que F ait une 

topologie métrisable). Alors A est strictement relativement semi-compacte. 

Soit (fn) une suite extraite de A, tout revient 4 montrer qu’on peut en 

extraire une suite qui converge en chaque point. On est donc ramené au cas 

de la topologie {, de la convergence simple, et nous supposerons maintenant 

que F’ est un espace topologique séparé quelconque.—Soit B lVadhérence dans 

C;(£,F) de Vensemble des f,, considérons sur la topologie la moins 

fine rendant continues les applications éléments de B, manifestement la suite 

(fn) est encore relativement semi-compacte dans l’espace C,(£,F'), ot EF 

désigne H muni de 2’. Pour qu’une suite extraite de (fn) converge en 

chaque point, il suffit done qu’elle converge en chaque point d’une partie 

dense de #, et l’application du procédé diagonal nous raméne 4 montrer qu’il 

existe dans # une suite partout dense. Mais 6(x) = {f(x) }yexn étant l’applica- 
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tion canonique de # dans le produit topologique G—J[]f(£), il revient 
feB 

manifestement au méme de montrer que image K = ¢(£) admet une suite 

partout dense. Mais K étant compact (comme image continue du compact I) 

sa topologie est aussi la moins fine de celles qui rendent continues les applica- 

tions f, (topologie qui est en effet moins fine, et d’autre part séparée comme 

on vérifie aussitot). K s’identifie donc 4 un sous-espace du produit topologique 

II fn(#), qui est métrisable, par conséquent K est un compact métrisable, 
n 

et a fortiori séparable. 

Remarque 4. Le théoréme 4 vaut encore si on suppose seulement que 

E est semi-compact. Tout revient en effet 4 montrer que K est compact, 

mais K est déja semi-compact comme image continue de #, d’autre part la 

topologique de K est complément réguliére et plus fine que la topologie 

métrisable définie par les fn; la compacité de K resulte alors du théoréme 3.— 

On aurait aussi pu s’épargner ce raisonnement et abréger en méme temps la 

démonstration précédente en faisant usage de la proposition 1, qui dit que 

la suite (f,) est encore relativement semi-compacte dans l’espace C(F, F), 

lorsque # désigne muni de la topologie la moins fine rendant continues les 

fx; tout revient alors 4 trouver une suite dense dans #, ce qui est immédiat. 

En conjuguant le théoréme 4 et la proposition 5, on obtient des cas 

étendus ot la semi-compacité relative entraine la semi-compacité relative 

stricte. Le théoréme de Smulian pour la topologie faible des espaces de 

Banach et plus généralement des espaces (3) (cf. [5]) en est un cas 

particulier, puisque un espace (%}) s’identifie 4 l’espace des formes linéaires 

continues sur son dual faible H’, et que H’ est réunion d’une suite de parties 

faiblement compactes. On notera d’ailleurs la parenté entre la démonstration 

directe du théoréme de Smulian, et celle du théoréme 4. Donnons pour étre 

complet l’énoncé le plus général du théoréme de Smulian (énoncé qui peut 

d’ailleurs se démontrer directement comme dans le cas classique) : 

PROPOSITION 6. Soit E un espace localement convexe, (tn) une suite 

faiblement relativement semi-compacte dans E, K une partie faiblement com- 

pacte du dual E’. Alors on peut extraire de (rn) une suite qui converge en 

chaque point de K (et par conséquent, en chaque point du sous-espace vectoriel 

faiblement fermé de E” engendré par K).—Si dans E il existe une suite de 

voisinages de l’origine dont Vintersection soit réduite a {0}, alors on peut 

extraire de (fn) une suite faiblement convergente. 

(il suffit de noter que la derniére hypothése assure l’existence dans EK’ 
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d’une suite de parties faiblement compactes dont la réunion soit partout 

dense ).—Rappelons que déja dans le dual faible d’un espace de Banach peut 

exister une suite relativement faiblement compacte (c’est 4 dire bornée), dont 

aucune suite extraite ne converge faiblment (cf. [5]), de sorte qu’une telle 

situation ne peut pas étre considérée comme tératologique. 

6. Critéres de compacité faible dans les espaces C°(E). Si E est un 

espace topologique, nous désignons par C(/) l’espace des fonctions complexes 

continues sur LY, par C*(2) Vespace des fonctions complexes continues et 

bornées sur #, muni de la norme uniforme qui en fait un espace de Banach. 

Si # est compact ou semi-compact, les ensembles C(#) et C”(£) coincident, 

et nous désignerons l’espace de Banach C®(#) par C(E) pour abréger. 

THEOREME 5. Soit EH un espace compact, pour qu'une partie A de C(E) 

soit faiblement relativement compacte, il faut et il suffit qu'elle soit bornée, 

et relativement compacte dans C(E) pour la topologie de la convergenve 

simple. 

La nécessité de la condition est manifeste. Pour montrer qu’elle est 

suffisante, il suffit de montrer d’aprés le théoréme d’Eberlein (cf. plus haut) 

que de toute suite (f,) extraite de A on peut extraire une suite faiblement 

convergente. Mais comme une suite (g,) extraite de (f,) est uniformément 

bornée par hypothése, et que par conséquent (les formes linéaires continues 

sur C(#) n’étant autres que les mesures de Radon sur #) sa convergence 

faible équivaut a sa convergence en chaque point (théoréme de Lebésgue), 

il suffit done d’extraire de la suite (f,), relativement compacte pour la 

topologie de la convergence simple, une suite (gn) qui converge en chaque 

point. Mais cela est possible en vertu du théoréme 4. 

I] faut bien noter que ce théoréme n’est plus exact lorsqu’on substitue a 

la topologie de la convergence simple une topologie strictement moins fine, 

comme par exemple la topologie de la convergence en tout point sauf un 

seul 2, comme on s’en convaine sans difficulté. Le théoréme qui correspond 

au précédent et au suivant dans les espaces localement convexes généraux sera 

examiné en détail plus bas. 

Le Théoréme 5 permet l’application des critéres de compacité établis au 

théoréme 2, et notamment le critére d), qui ne fait intervenir que les valeurs 

des fonctions sur une partie dense de #. On a méme le 

THSOREME 6. Soit E un espace topologique quelconque. Pour qu’une 

partie A de C®(E) soit relativement faiblement compacte, il faut et il suffit qu’- 
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elle soit bornée, et qu'il n’existe pas de suite (x;) extraite de EF de suite (fj) 

extraite de A telles que lim. lim. f;(a;) et lim. lim. f;(a) ewistent et sovent 

distincts. Ce critére subsiste si on assujettit la suite (a;) a étre extraite d’une 

partie dense EL, de E. 

On sait que l’espace C*(H) s’identifie 4 espace des fonctions complexes 

continues sur la “ compactification de Cech” de (qui s’identifie aussi 4 

espace des “ caractéres ” de l’algébre normée compléte C”({#)—mais en fait 

la théorie est trés élémentaire, cf. par exemple N. Bourbaki [2], page 14, 

exercices 6 et 7). Il existe une application canonique continue zz de H 

sur une partie partout dense # de L (application qui est biunivoque si et 

seulement si H est complétement régulier, mais peu importe), telle que |’on 

ait =f(%) quels que soient re et feC*(E) (ou f est la fonction 

sur définie par f). D’ailleurs, l'image #, de dans sera donc aussi 

dense. I] suffit alors d’appliquer le théoréme 5 a Vespace C(F), puis le 

corollaire 2 du théoréme 2 4 ce méme espace et la partie dense £, de L.— 

Notons que l’application de ce dernier théoréme et du critére du corollaire 2 

du théoréme 2, montre aussitdt que le théoréme 5 reste valable si FH est 

seulement semi-compact. 

Donnons une application immédiate du théoréme 6. Si G est un semi- 

groupe, muni éventuellement d’une topologie qui rende continues ses 

translations 4 gauche et 4 droite, nous dirons avec F. Eberlein ([6]) qu’une 

fonction complexe bornée et continue sur G est faiblement presque-périodique 

a gauche (resp. a droite), si ensemble de ses translatées gauches (respec- 

tivement droites) est une partie relativement faiblement compacte de l’espace 

de Banach C*(G). On a alors immédiatement la 

Proposition 7. Pour qu'une f C°(G) soit faiblement presque-périodique 

a gauche (ou a droite) il faut et i suffit qu'il n’existe pas de suites (x;) et 

(y;) extraites de G, telles que lim. lim. f(xiyj) et lim. lim. f(xiy;) existent et 

soient distincts. En particulier, les fonctions faiblement presque périodiques 

a gauche et a droite sont les mémes. Il sera donc a. propos de les appeller 

fonctions faiblement presque-périodiques tout court). 

7. Renforcement des critéres de faible compacité relative dans les 

espaces vectoriels localement convexes. 

THEOREME 7%. Soit EH wn espace vectoriel localement convexe séparé, 

(Ka) une famille de parties du dual E’ de E, a enveloppes convexres cerclées 
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relativement faiblement compactes, et telles que la famille des enveloppes con- 

vexes cerclées fermées K,, des Kg engendre algébriquement tout E’. Soit A 

une partie bornée de E, et supposons E complet et pour la topologie & de la 

convergence uniforme sur les ou dw moins lenveloppe convexe fermée de 

A complete pour cette topologie. 

a) St les K, sont faiblement fermés (c’est a dire faiblement compacts) 

alors pour que A soit faiblement relativement compact dans E, il faut et il 

suffit que pour tout a, ensemble des fonctions continues sur Kx définies par 

les éléments de A soit relativement compact dans C(K,) pour la topologie 

de la convergence simple. 

b) St on ne suppose plus forcément les Ke fermés, une condition néces- 

saire et suffisante pour que A soit relativement fatblement compact, est qu’il 

n'existe pas de suite (x;) extraite de A et de suite (a’;) extraite de quelque Ka, 

telles que lim. lim. <2;, 2’;> et lim. lim. <2;, 2’;> existent et soient distincts. 
fj ¢ 

En vertu du théoréme 2 corollaire 2 (qui s’applique ici puisque A est 

borné), la condition énoncée dans b) équivaut 4 la condition énoncée dans a), 

appliquée aux adhérences faibles des K,, de sorte qu’on peut se borner 4 

démontrer a). Nous identifions comme d’habitude # a lV’espaces des formes 

linéaires continues sur son dual faible, et notons comme dans 4. que tout 

revient 4 montrer que pour toute forme linéaire XY sur E’ qui est faiblement 

adhérente a A, les restrictions aux K, sont faiblement continues. (Dans la 

suite, il est inutile de conserver l’indice «). D/’aprés le théoréme de Mackey 

([9]), le dual de # muni de & est encore H’. I] existe d’autre part une 

application linéaire canonique > u(a) de E dans Vespace de Banach C(K) 

des fonction complexes continues sur K, application qui est continue par la 

définition méme de &, et dont la transposée w’ est done une application faible- 

ment continue du dual C’ de C=C(K) dans E’. L’image de la boule unité 

B de C’ par w’ est donc une partie convexe cerclée faiblement compacte de E 

(puisque B est faiblement compacte), contenant évidemment K’,, donc aussi K. 

En fait, il nous sera commode de savoir qu’elle est méme identique a K, cela 

resulte immédiatement du fait connu que B est l’enveloppe convexe cerclée 

faiblement fermée dans C’ de l’ensemble des “ masses + 1 ” placées aux divers 

points de K (comme il resulte aussitdt de l’emploi des ensembles polaires, cf. 

[5]). Nous allons montrer que la restriction de X a K est de la forme 

<X, wu’. u> = <f,u>, » désignant l’élément générique de B, et ot f est un 

élément convenable de Vespace C—=C(K) (c’est en fait la fonction sur 

K: f(z’) =<X,2’>), il s’ensuivra aussitét que la restriction de X a K est 
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continue, puisqu’en la composant avec l’application continue u’ du compact 

B sur K, on obtient une application continue (cf. [1] page 53, th. 1, et page 

62 th. 1, cor. 2). Soit done ¢ la trace sur A du filtre des voinages faibles 

de XY, on a pour tout 2 —=w.p(peB): 

<X, wu’. w> = lim. <a, u’. p> = lim. <u. 2%, p> 

or l’image de ¢ par wu est un filtre de Cauchy pour la convergence simple, et 

u(A) est faiblement relativement compact dans C(K), comme il resulte de 

Vhypothése et au théoréme 5; il suit que uw. tend faiblement suivant ¢ vers 

une limite fe O(K), d’ot suit bien <X, u’. = <f, p>. 

CoroLLAiRE 1. Soit HE un espace de Banach, K Vensemble des points 

eatrémaux de la boule unité de son dual. Pour que ACE soit fatblement 

relativement compact, il faut et il suffit qu'il n’existe pas de suite (2;) 

extraite de A et de suite (2’;) extraite de K, telle que lim. a <x, 2 j> et 
4 

lim lim. <2;, 2’;> existent et sovent distincts. 
j 

CoRoLLAIRE 2. Soit H un espace localement convere, (Ba) une famille 

de parties bornées de E telle que toute partie bornée de EF soit contenue dans 

Venveloppe convexe cerclée fermée de quelque B,. Supposons le dual fort 

(cf. [5]) H’ de E complet, ou du moins ses parties bornées et fermées com- 

plétes. Pour que ACE” soit relativement compact pour la topologie o(E’, E’’) 

(E” désignant le dual de E’ fort) il faut et il suffit qu'elle soit fortement 

bornée, et quil n’existe pas de suite (x;) extraite de quelques By et de suite 

(a’;) extraite de A, telles que et <x, existent 

et soient distincts. 

Remarque 5. En fait, sous les conditions du théoréme 7, on peut méme 

affirmer que l’enveloppe convexe fermée de A est faiblement compacte. En 

effet, la démonstration d’un théoréme connu de Krein pour les espaces de 

Banach se transpose aux espace vectoriels localement convexes pour donner 

’énoncé suivant: Soit # un espace localement convexe séparé, A une partie 

faiblement relativement compacte; pour que son enveloppe convexe fermée 

soit faiblement compacte, il faut et il suffit qu’elle soit compléte (ne fiit-ce 

dailleurs que pour la topologie +(H#, Z’) associée).—Nous ne donnerons pas 

la démonstration de cette proposition, qui s’appuie essentiellement sur le 

théoréme d’Eberlein généralisé (proposition 2) et le resultat de [7] rappelé 

plus haut qui nous a déja servi pour la proposition 2 et le théoréme 7. 

Notons encore que le théoréme 6 donne comme corollaire immédiat un 
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critére de convergence faible d’une suite dans un espace C®(F), et le théoréme 

? un critére de convergence faible d’un suite dans un espace de Banach 

quelconque. Ces critéres, pour le cas particulier de suites tendant faiblement 

vers 0, se trouvent déja dans Banach ([4], page 222). Il ne semble pas 

possible d’ailleurs d’en déduire les théorémes 6 et 7. 

INSTITUT DE MATHEMATIQUES, NANCY (M. ET M.), FRANCE. 
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By W. R. Scorrt. 

1. Introduction. Let G be an infinite group. For re G, let F(z, G) 

= F(x) be the set of ge G such that the equation g* 7 has no solution 

for n. Let K—K(G) be the set of ke G such that o(£(k)) < 0(G), 

where 0(S) is the cardinal number of elements in 8. Observe that if G 

is a p® group, then K(G) = G. 

This paper is devoted primarily to the problem of determining K, given 

G. The problem is solved for Abelian groups (Corollary 1 to Theorem 8, and 

Theorems 9 and 10), and considerable progress is made in the general case 

(Theorems 1-8, Corollary 2 to Theorem 8, and the Corollary to Theorem 11). 

In the process of (partial) solution of the above problem, two sidepaths 

are investigated. In section 3, a few results are given concerning the size 

of layers of a group. ‘These results are perhaps of independent interest. 

In sections 4, 5, and 6, in conjunction with the study of K, the intersection D 

of all subgroups G, of G with 0(G.) = o(G) is introduced. The principal 

result is that D — K for Abelian groups G. 

2. Definitions and notations. Let G be a group written multiplicatively 

with identity e. If ge G,o(g) will denote the order of g; 0(g) =o means 

that g" =e implies n=0. G is periodic if 0(g) << for every geG. Gis 

locally cyclic if for every 91, g2¢ G there exists a ge G and integers m and n 

such that 9” = 9:, g" =g2. A subgroup H of G is central if H CZ where 

Z is the center of G. A subgroup H is strictly characteristic if o(H) CH 

for every endomorphism o(G) =G of G onto G. It is fully characteristic 

if o(H) CH for every endomorphism o of G. The letter p will always 

denote a prime. A p-group is a group G such that 0(g) = p™) for all ge G, 

for a fixed prime p. A layer L(n) (L(2)) of @ is the set of ge G with 

0(g) =n(o). The notations 0(S), H(z), K, and D(G) =D will be used 

as in section 1. If @ is Abelian, the torsion T of G is the subgroup of ge G 

with o(g) <<. The p-component T, of T is defined by the equation 

For Abelian groups @, let H(p,r) =U L(p*). A p® 
i=0 i=0 

* Received January 15, 1951; revised October 9, 1951. 
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group is a p-component of the group of rationals mod 1. A direct product 

of subgroups of a group will be denoted by I. The symbol will always 

denote the point set union. If S, and Sz are sets, S;—S, will denote the 

set of s such that se S,,s#S8.. For the sake of brevity, a cardinal A will be 

called standard if (i) A>, and (ii) A is not the sum of N, smaller 

cardinals. In the statement of a theorem, H. and C. will mean hypothesis 

and conclusion respectively. 

3. The layers. Lemma 1. H. G is an infinite group, P a set of 

primes. S=(U UL(Ap))UL(o). 
peP 

C. =0(G) or 0. 

Proof. Suppose that there exists an se S. Clearly, we may suppose 

that either 0(s) = or 0(s) =p#P. Let N be the normalizer of s. Then 

i(N) =o0(Cl(s)), where 1(N) denotes the index of N and Cl(s) the class 

of conjugates of s. If geCl(s), then 0(g) = 0(s), and therefore Cl(s) CS. 

Hence, if (NV) = 0(@), we have o(S) = 0(G@). Therefore suppose 1(V) < 0(G@). 

Since 0(G) = o0(N)i(N), and since 0(G) = No, we have o(V) —o(G). It 

o(NNS) =0(G), we are done. If not, then 0(VNN(G—S) =0(G). Let 

geNN(G—S). Then =e, r0, implies =e, which implies 

that s" is in the subgroup {g} generated by g. If 0(s) =o. this would imply 

that 0(g) =o, a contradiction since g#S. If o0(s) =p#¢P, then plr, 

whence plo(gs). Thus gse8 for all ge NO(G—S). Hence 

0(S) =o(NN(G—S)) =o(G), 

i.e. o(S) —o0(G), and the theorem is proved. 

1. H. is a non-periodic group. 

o(L(2)) =0(@). 
Proof. Since G is non-periodic it is infinite. In Lemma 1, let P be the 

set of all primes. 

Corottary 2. H. p isa fixed prime. G 1s an infinite periodic group 

which is not a p-group. S=\L(n). 

C. 0(S) =0(G@). 

Lemma 2. H. pi, with ppp; foriA~j, anda>0. Gis 
4=1 

a group (finite or infinite). 
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0(L(n)) o(L(pi*)). 
Proof. If ge L(n), then gu where ge L(pi*). 

i=1 

Lemma 3. H. G is an Abelian p-group. 

o(L(p")) S 0(L(p"*)) (0(L(p)) +1) S (0(L(p)) +1)", r=1,2,° 

Proof. If then (9,921)? =e, and conversely. Hence, if 

geG, there are 0 or (o(L(p))-+1) solutions of the equation 2? = g. 

Therefore there are at most o(L(p"*))(o(L(p)) +1) elements «eG such 

that e L(p"*); i.e. o(L(p")) S o(L(p"*)) (o(L(p)) +1). The second 

inequality follows from the first by induction. 

CorottaRy 1. H. G is an Abelian p-group. o(G) H(p,1) 

=I[(1)UL(p). 

C. 0(H) =—0(G). 

Proof. If H is finite, then by Lemma 3, G is denumerable, a contra- 

diction. Hence, again by Lemma 3, 

0(G) 0(L(p')) = o(L(p)) = o(). 
CorotnarRy 2. H. @G is Abelian and periodic; o(G) is standard. 

There exist a p such that the subgroup H(p,1) satisfies the relation 

o(H(p,1)) =0(@). 
G —TIIG, where G, is the p-component of G. Hence 

r 

II 0(G»,). 
4=1 

o(G)S 
r=1 

Since 0(G) is standard, this implies that 0(G,) =o0(G) >, for some p. 

The theorem follows from Corollary 1. 

Remark. The condition that 0(@) be standard cannot be omitted (for 

infinite groups) in this corollary. 

4. Formulas and lemmas. We first list a few elementary identities 

and inclusion relations for F(z). 

(1) E(e) is the empty set. 

189 

Cc. 

Proof. 

(2) £(a2*) E(2). 
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For g" =z if and only if g* =z". 

(3) E(2,)U F(z). 

For g” =2, g* = 72-2 imply = 2,22. 

(4) E(e(x),o0(G)) G)) for any endomorphism o of G. 

For g" implies (o(g))"—o(z). 

(5) H(h,H) if he HCG. 

(6) E(x) G—N(z), where N(z) is the normalizer of z. 

For if =z, then gr = 2g, and ge N(z). 

THEoREM 1. H. G is an infinite group. 

C. D is a strictly characteristic subgroup of G. Moreover K CD. 

Proof. Let de D, let o(G) =G be an endomorphism of G onto G, and 

let G, be a subgroup of G with 0(G,.) =o0(G). Then if H =o'(G,), H is 

a subgroup of G with 0(H) =o0(G). Thus de H, and therefore o(d) 

Therefore o(d) eQAG,—D. Hence D is strictly characteristic. 

If there exists a ke K —D, then k# Gq for some subgroup G. with 

0(G,.) =o0(G). It follows easily that G, C E(k). This gives 0(H(k)) = 0(G@) 

which is a contradiction. Thus K C D. 

Corottary. H. G is an infinite group such that G=TIG, with 

0(Ga) < 0(G). 
C. K=D=—e. 

Proof. Let =|] Gg. Then G=G, X and therefore 0(G,*) 
BAa 

=o(G). Hence by Theorem 1, KC DCNG,* =e. 

4. H. G, is an infinite group, 

G UG,. 

C. K(G)C Lim inf K(G,). 

Proof. Let ke K(G@). Then o(£(k)) < 0(G) =limo(G,). Hence 

there exists an m)(k) such that if n > mo, then (i) ke Ga, (ii) o(L(k, G)) 

<o(G,). Hence by (5), 0(£(k, G,)) S 0( E(k, G)) < 0(G,) and ke K(Gn) 

if n> m, i.e. ke lim inf K(G,). 

Remark. If o(G@) is standard, then K(G) =limK(G,) and D(G) 

= lim D(G,). 

a 
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Lemma 5. H. H 1s a subgroup of G. 0(G) =o0(H) 

C. K(G) CK(H), 

D(G) C D(A). 

Proof. By Theorem 1, K(G)C H. By (5), if ke K(@), then o( E(k, H)) 

<= 0(E(k, G)) < 0(G) =0(H). Hence ke K(H). The other half of the 

theorem follows from the definition of D. 

Lemma 6. H. o0(G) ZN. A is a proper subgroup of G. 

C. 0o(G—H) —o(G). 

Proof. If 0(H) < 0(G@), this is immediate. If 0(H) —o0(@). then for 

any ge G— H, Hg C G—AZ and we have 

0(@) = 0(@—H) = 0(Hg) =0(H) =0(@). 
5. The subgroup K, general case. 

THEOREM 2. H. G is an infinite group. 

C. K is a central, locally cyclic, periodic subgroup of G. 

Proof. (i) K is a subgroup of G. By (1), ee K. By (2), if ke K, 

then K. By (8), if ki, K, then S + 

<0(G@), and k,k.e K. 

(ii) XK is central. For let ke K, and let N be the normalizer of k in G. 

Then by (6) and Lemma 6, if N ¥* G, we get 0(LH(k)) 20(G—N) —o(G), 

which is a contradiction. Hence NG, i.e. ke Z. Thus K CZ and K is 

central. 

(iii) K is locally cyclic. Let k,, kz, e K, ki; ~e (the other case is trivial). 

Then there exists an ze G—(H(k,)U FE (k.)). Hence there exists integers m1, 

m2 such that 7 Let d= (m, m2), and let d=r,n, + rene. 

Hence = k,"k."2e K. Moreover kj = (x¢)"/4, Thus K is locally cyclic. 

(iv) K is periodic. Suppose, on the contrary, that there exists a ke K 

with 0(k) =o. Then if H(k), there exists an n(x) such that k, 

Thus 0(z) = also. Let S* be the set of 2¢ H(k) for which (the unique) 

n(x) >1, and the set of for which n(x) <—1. Thus 

and therefore either 0(S*) —o0(G) or 0(S-) =0(G), or both hold. If ze S*, 

and r is any integer, then 
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Thus kre L(k), and therefore H(k). Similarly H(k). Since 

0(kS*) = 0(S*), 0(k*S-) =0(S°), this leads to a contradiction. 

THEOREM 3. H. G is not periodic. 

C. K=—e. 

Proof. By Corollary 1 of Lemma 1, 0(L(«)) =o0(G@). K, ke, 

then 0(k) < by Theorem 2. Hence L(«) C E(k), and o(H(k)) =0(G), 

a contradiction. Therefore K =e. 

THEOREM 4. H. 0(G) is standard. 

C. K is cyclic of order p" for some prime p and some integers n. 

Proof. By Theorem 3, we may assume that G is periodic. Therefore 

0(G) =Xo(L(n)). Since o(G) is standard, o(L(n)) =o0(G) for 

some integer n. Therefore by Lemma 2, 0(L(p")) =o0(G) for some prime p 

and some positive integer r. If L(p*), then L(p") C F(z) and K. 

r f-1 

Thus K C (J L(p*) (actually K C ) L(p*)). Now since K is locally cyclic 
4=0 i=0 

and periodic, it is isomorphic to a subgroup of the group R, of rationals 

mod 1. Hence XK is cyclic of order p", OS nr (actually n<1r). 

THEOREM 5. H. G is an infinite group. 

C. K is either a cyclic group of order p" or a p® group. 

Proof. Case 1. o(G) >>. If o(G@) is standard, the conclusion is 

immediate from Theorem 4. If o(G) is not standard, then there exists an 

increasing sequence {B,} of standard cardinals whose sum is 0(G). Choose 

a sequence {G,} of subgroups such that (@) GaC Gai, (B) 0(Gn) = Br, 

and (y) G=UG,. Then by Theorem 4, K(G,) is cyclic of order pp. It 

follows readily that lim inf K(G,) is a subgroup of G and is one of the two 

types described in the theorem. By Lemma 4, K(G@) is also of the required 

type. 

Case 2. 0(G) =>. By Theorem 3, we may assume that G is periodic. 

If o(ZL(p)) > 0 for an infinity of primes p, then for any xe we have 

o(E£(x)) =>, and therefore K =e. If for some p, Sp = U L(p") is infinite, 

then it easily follows that K is a p-group. But a locally cyclic p-group is one 

of the two types described. If, finally, Sp is finite for all p, and 0(S,) =1 

for all but a finite number of p, say pi,- - -, pr, then there is a maximum f; 
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such that there exist ge Sp, with o(g) = pi®. Then no element of G has 

order greater than n = IIp;*. Hence 0(G) = > 0(L(7)) which is finite by 
ja1 

Lemma 2. This is a contradiction. Hence the theorem is true in any case. 

Note that Theorem 5 improves Theorem 2. 

THEorEM 6. H. G is an infinite group. 

C. K is a fully characteristic subgroup of G. 

Proof. Let o be any endomorphism of G and let N be the kernel of o. 

If 0(V) = 0(G), thn K CDCN, and o(K) =eeK. If 0(N) < 0(G@), 

then o(G) is a subgroup of G with o(o(G)) =o(G@). If ke K, then by (4) 

0(L(o(k),o(@))) So(o(B(k, G))) S 0(B(k, G)) 

< 0(G) =o0(0(G)). 

Hence o(K) C K(o(G)). Now by Lemma 5, K(G) C K(o(G@)), and by 

Theorem 5, K(o(G)) is either a cyclic group of order p” or a p® group. 

Since o(o(K)) =0(K), and since both K and o(K) are subgroups of 

K(o(G)), it follows that o(K) CK. Hence K is fully characteristic. 

THEOREM 7. H. @G is an infinite group. G=HXF where H is a 

p-group and F is a periodic subgroup of G such that (i) o(F) < 0(G@) and 

(ii) fe F implies pfo(f). 

C. 

Proof. By (i) 0(H) =0(G@), whence by Lemma 5, K(G)C K(f). 

Let ke K(H). Then if he H— E(k, H), we have h"=—k for some n. Let 

o(h) = p* and let fe F, o(f) =r. Then there exists an integer A such that 

Ar =n (mod p*). Thus (hf)** = =h" =k. Therefore hf e G— G). 

Hence 

0(B(k, @)) S0(B(k, H))o(F) <0(@). 
Thus ke K(G@). This proves that K(G) = K(#). 

THrorEM 8. C. K is a p® group if and only if there exists a central 

p” subgroup C such that G/C is finite. If such a C exists, then C= K = D. 

Proof. Suppose first that such a C exists. Then G is periodic. Let 

91," * *5Yn be representatives of the cosets of C. Then there exists an r > 0 

such that g;7 =e, 1—1,- --,n. Choose ¢ such that p'=r. Then if ceC, 

o(c) and c’eC, o(c’) = p**t, we have (c’gi)"=c’ which has order 

13 
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= p*. Hence a suitable power of c’g; equals c. Thus H(c) is finite, and ce K. 

Hence C C K, and by Theorem 5, C= K. Also, clearly K =D. 

Conversely suppose that K is a p® group. K is central by Theorem 2. 

If G/K is finite, we are done. Suppose that G/K is infinite. Then 

0(G/K) =o0(G). Now let geG, and let n be the smallest positive integer 

such that g*e K. Then g*=—k and k’"—k" for some k, k’c K. Thus 

(gk’)"=e while (gk’)"# K for 0<r<n. Therefore if k’e K, k’ ~e, 

then gk’ e« E(k’), i.e. H(k’”) contains at least one element of each coset of K. 

Thus 0( £(k’)) 2 0(G/K) =0(G), a contradiction. Therefore G/K is finite 

as asserted. 

CoroLttarRy 1. H. G is abelian. 

C. K is a p® group if and only if G=H X F where H is a p® group and 

F is finite. 

Proof. If K’ is a p® group then (see [1], p. 767) G—=K &X F, and by 

Theorem 8, F is finite. The converse is obvious. 

2. H. o(G) 

C. K isa cyclic group of order p". 

Proof. This follows from Theorems 5 and 8. 

3. H. K,—K(G/K(G)). 

C. Kz has order 1 or is not defined. 

Proof. If K is a p® group, then G/K is finite and K, is not defined. 

Otherwise K is finite. Let Kxe K.. Then if # is the set of ge G such that 

Kge« HE (Kz), we have 

0(E) =0(K)o(E(Kz)) < 0(@). 

If gf FU(UF(k)), then g* kar for some integer n and some ke K. and 

g” =k" for some m. Hence g™" and gf E(x). Therefore 

o(E(2)) So(B) + <0(@) 
since K is finite. Hence xe K and K,. has order 1. 

6. Abelian groups. 

Lemma H. ae 8, where 0(G) =0(8) R ts the 

set of subgroups Gg of G with 0(Gg) = 0(G@). 
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C. (i) D=e. (ii) o(R) = 2. 

Proof. There are 2° subset of G, hence 0(R) = 2%, There are 

2°(@) subsets S’ of S of order 0(G@). Then if N(S’) =H, «e 8’, we have 

o(N(S’)) = 0(G), and S’ 4 8” implies N(S’) N(S8”). Hence = 2°. 

Clearly, also, DC ON(S’) =e. 

THEOREM 9. H. o(G) >, and G is Abelian. R is the set of sub- 

groups Ge of G with 0( Gy) =o0(G). 

C. (i) (ii) K=D=—e. 

Proof. Let T be the torsion of G. 

Case 1. o(T) <0(G). Then o(L(o)) —o(G). Let B= {b,} bea 

maximal set of independent elements of L(oo). We assert that 0(B) =o(L()). 

For suppose that 0(B) <o(L(«)) and let H be the subgroup of G 

generated by the Then 0(H) —o(B) if 0(B) =&, and o(H) if 

0(B) <No. Hence, in any case, 0(H) < o(L()). For fixed n, if 2* = y”, 

then (ry*)"=—e and xy*eT. Thus there are at most o(7') solutions of 

a" == h for fixed n and fixed he H. Hence the number of solutions of ae H 

for x, allowing n to vary, n 0, is at most $.o(T)0(H) < 0(G) =o(L()). 

Therefore there exists an xe L()-H such that the set B’ = BUz is inde- 

pendent. This contradicts the maximality of B. Hence 0(B) =o0(L()) 

as asserted. The theorem follows in this case from Lemma 7. 

Case 2. o(T)=0(G@). Then T=IIT,. 

Case 2.1. o(T,) =o0(T) for some p. Then by Corollary 1 of Lemma 3, 

we have 0(H(p,1)) =0(G). Now H(p,1) —TIIC, where the Cg are cyclic 

of order p. There are clearly 0(G@) factors Cy. Therefore by Lemma 7 the 

theorem is true. 

Case 2.2. o(T,) <o0(T) for all p. Let U=—TIT,, for all primes p; 

such that 0(T7'y,) >No. Then 0(U) =o0(T) =3o(T>,). By Case 2.1 each 

T,, has 27?) subgroups H(t) of order o(7»,). For each 1, choose an 

H(t) CT>»,, with 0(H(t)) =0(T>,). Then V (t) is a subgroup of 

U such that 0(V) —o(U). The number of subgroups formed in this 

manner is clearly 

1120(7»,) Q20(Trs) — Q0(U) 20(G), 

Moreover, it is clear from Case 2.1 that the intersection of all the subgroups 

V is e. 



196 W. R. SCOTT. 

Remark 1. This result may be combined with that in [3] to get the 

following theorem: 

If G ts an Abelian group such that for any proper subgroup H it is true 

that 0(H) < 0(G), then G is either a finite group or a p® group. 

Remark 2. The proof of Theorem 9 may be altered slightly to prove 

the following generalization : 

If G is a non-denumerable Abelian group, 0(G@) 2=A=R&), and R(A) 

is the set of subgroups G, of G with 0(G,) =A, then 0(R) = (0(G))A. 

THEOREM 10. H. G ts Abelian, 0(G) =p, and G cannot be expressed 

in the form H X F with H a p® group and F finite. 

C. D=K=—e. 

Proof. Case 1. G is not periodic, i. e., there exists a g ¢ G with 0(g) =o. 

If g’ eG, 1 < 0(9’) <o, then g’ is not in ‘he subgroup generated by g. 

If g’eG, 0(g”) =o, then g” is not in the subgroup generated by g’”. 

Hence D =e. 

Case 2. Gis periodic. Then G = 

Case 2.1. 0(G,) =o0(G) for some p. 

Case 2.1.1. o(H(p,r)) for some r. Then H(p,r) 
n=1 

where C,, is a cyclic group. Then by Lemma 7, D —e. 

Case 2.1.2. o(H(p,r)) <0(G) for all r, i.e, H(p,r) is finite for 

all r. Then (see [2], p. 102) there exists a p® subgroup H of G. Hence 

(see [1], p. 767) G=H XM. By hypothesis M is infinite, and therefore 

DC HNM—e. 

Case 2.2. o(Gp) <0(G) for all p. Then by the Corollary to Theorem 

1, D=e. 

Thus in all cases D = e, and therefore K =e also. 

7. Miscellaneous. 

THEOREM 11. H. WN is a normal subgroup of G, 0(G/N) Z®&), 

D(G/N) =eN. 

C. D(G) CN. 

Proof. If 0(N) =0(G), the conclusion follows from the definition of 

[! 

[. 

i 
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D(G). Suppose 0(N) < 0(G@), and let de D(G). If H* is a subgroup of 

G/N not containing dN, then its inverse image H is a subgroup of @ not 

containing d. Hence o(G/N) = 0(G@) > 0o(H) = o(H*). Thus dN e D(G/N), 

ie. dN=—eN. Hence deN. 

Remark. The above theorem remains true if the letter D is replaced by 

K throughout. 

Corottary. H. 0(G) >. @Q is the commutator subgroup of G. 

C. DCQ, hence K CQ. 

Proof. If 0(Q) =0(G) then DC Q. If 0(Q) < 0(G), then 0(G/Q) 

=0(G) >, and G/Q is Abelian. By Theorem 9, D(G/Q) = eQ, and by 

Theorem 11, D(G) CQ as asserted. 

Definition. Let G be an infinite group, and let 8% SAS0(G). Let 

K(A, G) be the set of ke G such that o(E(k)) < A. Let D(A, G) be the 

intersection of all subgroups G, of G such that 0(G.) 2 A. 

Note that K(G) = K(0(G), G), D(G@) = D(o0(G),G). IfA < B, then 

K(A, G) is a subgroup of K(B, G) and D(A, G) is a subgroup of D(B, G). 

Moreover K(A,G) C D(A,G), and K(A,G@) is fully characteristic and 

D(A, G@) is strictly characteristic in G. It follows from Corollary 2 to 

' Theorem 8 that if 0(G@) > A = &>, then K(A, G) is a cyclic group of order p”. 

UNIVERSITY OF KANSAS. 
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ON ISOMETRIC SURFACES.* 

By AvurEL WINTNER. 

1. The starting point of the following considerations was the observation 

that, in the differential geometry of surfaces, the fundamental notion of 

isometry is frequently used in a loose and misleading sense. Even when 

writers are careful enough to specify the assumptions of smoothness (the 

actual degree of differentiability, possibly the analyticity) of the two surfaces 

concerned, usually no mention is made of the degree of smoothness required 

of the mapping of the two surfaces which realizes their isometry in question. 

In order to clarify this objection, a few definitions will be needed. First, 

if S denotes a sufficiently small (open) piece of a surface in the X-space, 

where X = (z, y,z), and, if on a sufficiently small (u*, u?)-domain of a para- 

meter plane, 

(1) X —X(u', u’) 

is a parametrization in which the vector function X (wu, u*) is of class C* and 

such that the vector product of X, = 0X /du* and X, = 0X /du? does not vanish, 

then (1) is called a C*-parametrization of S. By a C*-parametrization is 

meant * a C?-parametrization in which the function X(u*,u?) is of class C". 

If 8, when given as a set of points in the X-space, has some C"-parametrization, 

then S§ will be called of class C". 

In Section 4, a corresponding manner of speaking will be used with 

reference to the surface S and to the function class 

(2) C"(X), (9<A<1), 

where A denotes a (locally uniform) Holder index for the n-th derivatives of 

X (u*, u?), for a fixed n. Similarly, (1) will be called an analytic parametriza- 

tion if it is a C*-parametrization having the property that the function 

X (u', u*) can be represented (locally) as a convergent power series in 

while § will be called analytic if it has some analytic parametrization. Note 

that every analytic S has C"-parametrizations which are not C”*!-parametriza- 

tions, where n can be chosen arbitrarily. 

* Received January 16, 1951; revised October 15, 1951. 

*Ifn=1,2,.... The limiting case n = 0, which (unless the contrary is implied) 

will be excluded, refers to one-to-one continuous parametrizations (1) of SV. 
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Besides S, consider another S, say S’. Suppose that both § and 8’ are 

of class C*, at least. If they are of class C", where n oo is not excluded, let 

(3) 8: X(u,u*?) and X’(u, ua’) 

be C"-parametrizations; if S and 9’ are analytic, let their parametrizations 

(3) be chosen analytic. With the understanding that 8 and 8S’ are sufficiently 

small, let 

be a C?-transformation (by this is meant that the two functions (4) are 

of class C* and have a non-vanishing Jacobian). If such a one-to-one trans- 

formation can be chosen so that it will transform the metric form, ds?, on § 

into the metric form, ds’’, on 8’, i. e., if the two vector functions (3) satisfy, 

for an appropriate choice of the mapping (4), the identity 

5 | dX’(u’, u’?)| =| dX(u', u?)| by virtue of (4), y 

then § and 9’ are called isometric. This is the definition which tacitly under- 

lies the classical literature of the subject. 

2. Needless to say, the C'-character of the functions occurring in (3) 

and (4) makes (5) a meaningful statement, since both X and X’ are functions 

of class C* in terms of (u*,u?) (or, equivalently, (w’', u’?)) and possess there- 

fore? the complete differentials * occurring in (5). On the other hand, even 

if the surfaces (3) are very smooth (say analytic), there is no justification 

for restricting (4) in (5) to transformations having a high degree of smooth- 

ness since nothing like such a restriction (say analyticity) is involved in the 

geometrical idea of a transformation (4) which preserves the metric, ds”. 

This contrast leads, however, to geometrically undesirable situations. 

In order to see this, consider the wording of the following assertion 

(stated, to be sure, because of its instructive nature only): “Two closed, 

convex, analytic surfaces, F and F’, must be congruent * whenever they are 

(locally) isometric.” What should be meant here by the assumption of the 

isometry of F and Ff’? The existence of 

2 This conclusion shows that, as far as (5) is concerned, the C-character of the 

admitted mappings (4) could slightly be generalized. 

’ Actually, not even this, the existence of the “ vectors ” dX, but only the existence 

of the “ distances ” | dX |, is needed for the formulation of the requirement (5) (so that 
isometry can be defined in a manner which is even more general than, but geometrically 

just as meaningful as, the definition referred to in the preceding footnote). 

‘Under the group consisting of the translations, rotations and reflections of the 
X-space. 

= 
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(a) analytic transformations (4) or (b) just C*-transformations (4) 

which preserve the ds?? If the statement is meant in its interpretation (a), 

then the content of the statement is hardly geometrical in nature, since it does 

not preclude the following possibility : The geometrical objects, F and F”, need 

not be congruent if they are isometric under mappings (4) which are non- 

analytic but very smooth, say of class C®. Hence, in order to make the state- 

ment geometrically significant, its truth in interpretation (b) must be proved 

to imply its truth in interpretation (a). 

It so happens that, in the theorem, quoted above, also the restriction of 

the convex surfaces I’, F’ is unnecessary, since Herglotz’s result [4], as pre- 

dicted by Weyl [7], has nothing to do with the analyticity, but only with a 

specific degree of differentiability (C”), of the given pair of surfaces; cf. 

Section 4 below. But then the theorem has again two interpretations, one 

being the above (b) and another, say (a,), an interpretation which would be 

an appropriate C”-analogue of the above (a) ; cf. the end of Section 4 below. 

3. There is however a classical instance of isometry in which, in contrast 

to the Weyl-Herglotz problem, the analyticity of the surfaces is precisely the 

issue. It is S. Bernstein’s theorem, the statement of which runs as follows: 

“Tf § and an analytic S’ of positive Gaussian curvature are isometric, then S 

is analytic.” This is Bernstein’s own formulation of his theorem (the italicized 

statement in [1], p. 434). But it is again not specified which of the two 

interpretations defined above, (a) or (b), is meant under “ isometry,” and so 

it is again necessary to point out that the weaker formulation, (b), implies 

the stronger one, (a) ; see Section 3 below. 

In addition, the above wording of Bernstein’s theorem fails to specify 

the degree of smoothness required of the given surface, 8. In this regard, 

Bernstein’s proof makes it clear that S is assumed to be of class C*, rather 

than, as one might desire (and expect from the above wording), of class (? 

only. This comes about by Bernstein’s use of his general theorem. according 

to which every function z = z(z,y) satisfying a partial differential equation, 

of second order, of elliptic type, and having analytic coefficients, must be 

analytic whenever it is of class C*. Accordingly, the improved version of the 

above wording of Bernstein’s theorem is as follows: 

If S is of class C* and of positive Gaussian curvature, and if there exists 

a C'-transformation (4) of 8 into an analytic 8’: X’(u", w’?), satisfying (5) 

(where the parametrization S: X(u*,u?) ts of class C*), then § ts analytic. 

Bernstein’s proof is based on an application of geodesic polar coordinates 

200 
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({1], p. 485). But a perusal of his proof shows that the application of such 

particular (u*, u*)-parameters is unimportant. In fact, under the assumption 

that S has a C'-parametrization (1), all that is needed is the existence of a 

C'-transformation (4) satisfying (5) and having the property that, while the 

vector function X(u?, u?) is supposed to be of class C1 in (u', u?), it becomes 

of class C* in (wu, wu’) by virtue of (4). The rest then follows from Bern- 

stein’s general theorem on elliptic differential equations and from Section 4 

below. 

These remarks also show that the theorem can well be formulated so as 

to avoid the difficulties involved in the various concepts of an isometry; 

namely, as follows: 

Let (gix) be a binary, symmetric matrix of analytic functions 

Jik = Jix(u*, 

and suppose that the curvature ° of 

(6) ds? = giz,(u', dutdu* 

is positive. Then a vector function (2, y,z) = X = X(u', wu’) satisfying 

(7) | dX wu?) |? == ds? 

must be analytic whenever it is of class C*. 

While this theorem might be true even if the last C* is relaxed to C’, 

its truth or falsehood is undecided even if the C* is relaxed just to C? (in 

which latter case, but not in the C'-case, (1) must have a curvature not only 

by virtue of the Theorema Egregium but in terms of the normal image of 

S as well). 

4. If S and 9’ are of class C” [analytic], let all their parametrizations 

(3) considered be restricted to C"-parametrizations [analytic parametriza- 

tions], and let (4) be called a C”-isometry [an analytic isometry] of the pair 

(3) if (5) is satisfied and (4) is a C™-transformation [an analytic trans- 

formation] (in the sense that both functions occurring in (4) are of class C™ 

[analytic] with a non-vanishing Jacobian). 

It is understood that, in the non-analytic case of this definition, 1 = n co 

and 1 = m Soo, and that mn is allowed. In the analytic case, the above 

critique (Sections 2-3) will be disposed of by the following lemma: 

If S and S& are analytic and C1-isometric, then all of their C1-isometries 

are analytic isometries. 

5 Calculated from the Theorema Egregium. 

= 
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This lemma is a corollary of (i) the fact that, according to Gauss [2], 

every analytic S admits of an analytic parametrization (1) in which the line- 

element (6) appears in the normal form 

ds? —= g(u*, u*) {(du*)® + (du*)*}, (9 = gi > 0, 912 = 0) 

to be combined with (ii) the fact that if two real-valued functions (4) are 

of class C1 and satisfy the Cauchy-Riemann equations, then wu’ + iu” is an 

analytic function of u* + iu?. 

First, since S and 8’ are analytic, two applications of (i) supply the 

existence of two analytic transformations (of non-vanishing Jacobian), say of 

a: (u', u?) (v', v?) and B: (u4,u) > v”), 

2 by virtue of which the respective line-elements | dX (u, v)|? and | dX’(w’, v’) 

on § and S’ become of the form 

ds* = h(v', v?) {(dv')? + (dv?)?} and = h’(v", { (dv)? + (dv”)?}, 

where h > 0, h’ >0. On the other hand, since § and S’ are supposed to be 

C1-isometric, there exist two functions (4), of class C* and of non-vanishing 

Jacobian, satisfying 

ds? == ds’? by virtue of y: u?) wu’). 

But the last three formula lines show that B-ya" is a conformal trans- 

formation of a domain in the Euclidean (v', v?)-plane into a domain in the 

Euclidean (v’', v’?)-plane, and is a C1-transformation, since y is. It 

follows therefore from (ii) (where every wu must be replaced by the corre- 

sponding v) that B“ya™ is analytic. In view of the analyticity of B and a, 

this proves that y is analytic, which is the assertion of the above lemma. 

One might think that this proof also leads to a C"-analogue of the above 

lemma, with “conformal” transformations a and 8 which, instead of being 

analytic, as above, are of class C". Actually, this approach fails, since it 

applies only to the classes (2) (with an unspecified A). In fact, Lichtenstein’s 

analogue of the above (i) is as follows: If n>0 and <A< 1. 

then every S of class C"(A) can conformally be mapped on a domain in the 

Euclidean plane by a transformation (4) of class C"(A*). But it is not known 

(and it is probably not true; cf. Section 5 below) that this remains true if 

both C"(A) and C"(A*) are replaced by C” itself.? Nevertheless, the straight 

* Cf. [5], where the proof is given for n =1 only but, as easily realized, applies 

for n>1 also. 

7 Or, for that matter, if 0<A*<A<1 is replaced by O<A* =A<I1. 
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C"-analogue of the above analytic lemma might be true, since all that follows 

is the failure of conformal normal forms. 

5. The question raised at the end of Section 4, concerning the necessity 

of a Holder index A, can slightly be generalized, by omitting the restriction 

that the binary Riemannian line-element (6) be “ embedded ” in the X-space, 

as required by (1) and (7). Then, if (u*,w?), (v',v®) are denoted by 

(u,v), (p,q), and 911, J12, Jo2 by H, F, G, respectively, the question becomes, 

for every fixed positive n (including »—1—0) the following: 

(?n) If #,F,G@ are given functions of class C"-* on a sufficiently small 

(wu. v)-domain, and if 

(8) EG—F?>0 

(that is, if the quadratic form 

(9) ds’ = E(u, v)du? + 2F(u, v)dudv + G(u, v) dv? 

is definite), then must there exist two functions 

(10) p=p(u,v), g=q(u,%), 

of class C" and of non-vanishing Jacobian, with the property that the form 

(9) becomes 

(11) ds’ —= D(p, q) (dp* + dq’) 

by virtue of (10) (for some function D > 0, determined by the Jacobian of 

(10)) ? 
The answer to (?;) is affirmative if and only if (8) and the mere con- 

tinuity (C”™*=C°) of the three coefficient functions of (9) are always 

sufficient to assure the existence of at least one C?-solution (10) (of non- 

vanishing determinant) for Beltrami’s form of the Cauchy-Riemann equations, 

that is, for 

(12) Qu = — Epy)/W, Qv = — (Fpv — Gpu)/W, 

where W? = HG — F”. 

If a solution (10) of (12), instead of being of class C* only, is of class 

C?, then, since the rule ¢uy = dru becomes applicable to both functions (10), 

it follows from (12), and from the non-vanishing of the Jacobian of (10), 

that both ¢ = p and ¢ gq are solutions ¢ ¢(u, v) ~ const. of 

(13) {(G@ou — Por) /( BG — F*) 4}, + { (Lo, — Fou) /(EG — F*) 4}, = 0 



204 AUREL WINTNER. 

(Laplace-Beltrami). Hence, if the answer to the case n = 2 of the question 

(?n) is affirmative, then the (homogeneous, linear, elliptic) partial differential 

equation (13) must possess some non-constant solution ¢—¢(u, v) of class 

C? whenever H(u,v), F(u,v), G(u,v) are functions of class C* satisfying 

(8) (incidentally, this can be concluded without a detour through (12) also; 

ef. [6], pp. 1295-1297). But it is unlikely that this (hence an affirmative 

answer to the question (?,) if m2) should turn out to be true. The reason 

for being skeptical is as follows: 

Choose 

(14) E(u, v) =1 and F (u,v) =0 

(so that uw, v are, in the main, “ geodesic polar coordinates ” in the sense of 

Gauss, with reference to the metric (9) and to a point of the (u, v)-plane). 

It is clear from (14) that (8) is satisfied if G > 0, that (12) reduces to 

(15) Pv = — 9 (U,V) Quy Qv = 9 (U,V) Puy 

if g denotes G3 > 0, and that (13) therefore simplifies to 

(16) (¢u9)u + (be/9)v = 9. 

Hence, if the answer to the question (?.) is affirmative, then (16) must have 

a solution ¢ = ¢(u, v) ~ const. of class C? whenever g = g(u, v) is a positive 

function of class C*. But then the coefficients of (16), being composed of 

Ju, J, and g, are just continuous, and so (16) does not seem to be substantially 

different from the differential equation 

(17) duu + pov + = 0, 

in which the given function, f, is just continuous. However, it was shown 

in [8] that it is possible to choose a continuous function f(u,v) > 0 in such 

a way that (17) will fail to have any (continuous) solution ¢(u, v) ~ const. 

on any (u, v)-domain. 

6. Since the answer to the questions (?,) is not known, it is worth 

mentioning that the answer is surely in the negative if (8) is replaced by 

(18) EG—F? <0 

and, correspondingly, (11) by 

(19) ds* = D(p, q) (dp? — dq’). 
For the case n = 1 of the respective class C™-*, C” (a case in which F, F, G 
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are just continuous, hence (10) is just a C*-transformation), this can, in 

other words, be formulated as follows: There exist hyperbolic line-elements 

(9), with continuous coefficient functions E, F, G, which cannot be mapped 

“conformally” on the non-Euclidean (p,q)-plane by any mapping (10) of 

class C?. 

In order to prove this, choose (9) as in (14). Then (18) reduces to 

G <0 and, since (11) is replaced by (19), what corresponds to the Cauchy- 

Riemann system (15) becomes 

(20) qu qu =f (U, Pus 

where f = (— @)3>0. Hence the assertion is that, if f(u, v) is an arbitrary 

positive continuous function, then (20) need not have any solution (10) of 

class C1, unless the Jacobian 0(p, q)/0(u,v) vanishes identically. 

In order to prove the existence of such an f, write (20) in the form 

(P+q)v=+f(u,v)(p+q)u The latter shows that ¢—p-+q must 

satisfy 

(21) — f (U,V) ou = 0 

(and ¢ = p—gq the homogeneous, linear, partial differential equation which 

results from (21) if f is replaced by —f). But it was shown in [8], pp. 733- 

734. that there exist continuous functions f = f(u, v) > 0 having the property 

that, no matter where, and no matter how small, a (uw, v)-circle be chosen, the 

differential (21) will not possess within the circle any solution ¢ = ¢(u, v) 

of class C*, except the trivial solution ¢(u,v) const. In view of the con- 

nection between (21) and (20), this proves more than what was claimed above 

for the case n —1—0. 

7. The existence of an f, satisfying the conditions used in connection 

with (20), has a significance from the point of view of the theory of multipliers 

(Euler). In order to see this, let P and Q be continuous on a simply con- 

nected open (2, y)-domain, and let J denote any smooth Jordan curve, finally 

D any open set contained in this domain. If »(2, y) is a continuous function 

on the latter, and if the line integral, along every C, of u(z, y) times 

(22) P(a, y)dx + Q(2, y) dy 

vanishes, then »(2z, y) will be called a multiplier of the Pfaffian (22), provided 

that w(x, y) does not vanish identically. It turns out that, if no assumptions 

of smoothness (involving partial derivatives) are placed on the functions 

P(z,y), Q(x, y), then it is possible to choose the Pfaffian (22), with con- 
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tinuous P(x, y) and Q(x, y), in such a way that on no open (2, y)-domain D 

will (22) possess a multiplier. 

In order to see this, suppose that (22) is such as to possess a multiplier, 

p(z,y). Then the line integral of »(z,y) times the Pfaffian (22), when 

extended from a fixed (20, yo) to a variable (xz, y) along a smooth Jordan arc, 

will be a function of (z,y) and, if this function is denoted by ¢$(z,y), the 

partial derivatives $2, dy will exist and satisfy the relations 

(23) $2(Z, y) = y)P (a, dy (2, y) = y) Q(z, y). 

In addition, ¢, and ¢, are continuous. This follows from (23), since P,Q 

and » are supposed to be continuous. Accordingly, $(2, y) is of class C?. 

Choose P(z,y) =1 for every (z,y), put Q@=—f, and write u and v 

instead of y and 2, respectively. Then (23) becomes 

(24) (u, v) = p(u, v), v) = p(U, v)f(u, v) 

(if w and v are interchanged as arguments). Substitution of »(u,v) from 

the first of the relations (24) into the second shows that ¢(u, v) is a solution 

of (21). Hence, if f(u,v) is so chosen as at the end of Section 6, then, 

since ¢(u,v) is of class it follows that ¢(u, v) — const. on every D. 

In particular, the partial derivative ¢,(u,v) vanishes identically. In 

view of the first of the relations (24), this means that » vanishes identically. 

Since such a yw was excluded in the definition of a multiplier, the proof is 

complete. 

8. In Section 2, reference was made to Herglotz’s theorem [4], which 

states that, under certain assumptions of smoothness, two closed, essentially 

convex * surfaces are congruent whenever they are isometric (“ congruence ” is 

meant in the sense including “ anti-congruence,” i.e., reflections on a plane 

of the Euclidean X-space are allowed). With regard to the assumptions of 

smoothness, the situation is as follows: While the so-called derivation formulae 

(those of Gauss and Weingarten) hold on any surface of class C?, Herglotz’s 

proof involves differentiations (of first order) of these formulae and assumes 

therefore that the convex surfaces are of class C*. In addition, the proof 

depends on a tacit assumption, one corresponding to the comments in Sections 

1-2 above. In fact, the differentiated formulae, just mentioned, contain local 

8 A convex surface (of class OC?) will be called essentially convex if the set of its 

parabolic points (if there are any) is of Lebesgue measure 0; cf. (52) below. For 

instance, convexity implies essential convexity under the proviso that the Gaussian 

curvature should be positive with the possible exception of isolated points or curves. 
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representations of the two C%-surfaces in terms of the same parameter plane 

(ut, u2). According to the terminology introduced at the beginning of Section 

4, this additional hypothesis means that the two surfaces are supposed to be 

locally C%-isometric. 

From a geometrical point of view, there is an objection to most (%- 

assertions in the theory of surfaces. In fact, the curvatures (total and mean, 

K and #7) and even both fundamental forms (gi,du‘du* and hizdu‘du*) exist, 

and are continuous, on surfaces of class C*. Correspondingly, the restriction 

of a theorem to surfaces of class C*, instead of to more inclusive (and geo- 

metrical) class C?, is often due to accidental formal difficulties, resulting from 

the limitations of the underlying analytical tools, rather than to the actual 

geometrical situation. 

For instance, while the fundamental existence theorem of the differential 

geometry of surfaces (Bonnet) is a C%-theorem in its classical wording, it can, 

with some effort, be freed (cf. [3], pp. 758-760) of the unnatural C*-restric- 

tion. In what follows, the possibility of a corresponding reduction, C* — C?, 

will be proved in Herglotz’s theorem, both with regard to the smoothness of 

the two convex surfaces and that of their underlying isometry. In other words, 

it will be proved that the content of the theorem can be refined to the following 

statement : 

Two closed, essentially ° convex surfaces of class C? are congruent when- 

ever they are (locally) C?-1sometric. 

It would be desirable to reduce the theorem even further, by showing 

that every (local) C1-isometry of two C?-surfaces is a C?-isometry by necessity 

(cf. Section 4). 

9. As in (3), let S and 9’ be two, sufficiently small, pieces of surfaces 

both of which are of class C?. While in the application of the lemma to be 

derived, S and S’ represent pieces of two closed, convex surfaces, no such addi- 

tional assumption is made now (so that the Gaussian curvatures need not be 

non-negative). Suppose that § and S’ are C?-isometric. Then after a suitable 

C*-transformation (4) (of non-vanishing Jacobian), (3) can be assumed to 

be in the form 

25) S: X(u', u?) and 8’: X’(u', u’), 

where 

(26) | dX (ut, u?) |? == | dX’ (ut, u?) |? 

® See the preceding footnote. 
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(since (4) in (5) is now wu =u’, wu’ = u*), and where the vector functions 

(25) are of class C? and such that the vector products [X1, X2], [X’1, X’2] 

of the respective partial derivatives Z; = 0Z/du* (1 =1,2;Z —X, X’) do not 

vanish. Thus there exist normal unit vectors, say 

(27) X2]/|[X1,X2]| and N’ Xe] |, 

and, according to (26), the scalar products 

(28) = Xx, Jix 

are respectively identical (and have a determinant which is positive, say 

(29) g > 0, where g = (det gix)}, 

since [X,, X.] 0), and the functions (27), (28), (29) of (u4,u?) are of 

class C?. In contrast to (28), expressing the identity of the two first funda- 

mental forms, gagdutdu® and g’agdu*du®, there are two distinct second funda- 

mental forms, the coefficients of which are defined by 

(30) X h’ ix, =m ix 

(Xin = 0?X/du*du*), and, since the functions (25) and (27) are of class 

C? and C’, respectively, the functions (30) are just continuous. 

The two matrices (hiz), (A’ix) (which can be definite, semi-definite or 

indefinite) have the same determinant at every point (u’, u?) ; in other words, 

(31) g?K = det g?K = det h’ix, 

if (29) and the first of the relations (31) are considered as the definition of 

the continuous function K — K(u*,u*) 20. If the function (25) were of 

class C*, hence the functions (28) of class C?, then, since (31) defines the 

Gaussian curvatures, K, of S and 8’, respectively, the identity claimed by (31) 

would follow from the classical form of the Theorema Egregium (note that 

the latter contains the second derivatives of functions gi). This proof of (31) 

fails to apply, since the functions gj, are supposed to be of class (% only. 

That (31) is nevertheless true in the present case also, follows from the 

circumstance that, due to a fact first observed by Weyl, a certain integrated 

form of the Theorema Egregium happens to hold for every surface of class C? 

(for references and for a simple proof, cf. [3], p. 760 and formula (7) on 

p. 759). 

Besides the (common) Gaussian curvature, K, of S and 89’, consider 

their (generally different) mean curvatures, 

(32) H = 4gPhap. (33) H’ = h’ ag. 
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where (g**) denotes the reciprocal matrix, (gix)*, of (gi). Put 

In view of (29), the function J = J(u1, u?) defined by (34) is the “ mixed” 

form (in the sense of Brunn and Minkowski) of the two expressions (31). 

(This “ mixed ” Gaussian curvature seems first to have arisen in connection 

with Weingarten’s “associated surfaces” of his theory of infinitesimal de- 

formations; cf. the reference in footnote '° below.) All three functions (32), 

(33), (34) are continuous, since the functions (30), (28) are. 

For the above-defined functions, the integral relation 

(35) f X2)du* = g{(N -X)J + H’}du'du? 

D 

is an identity in C, where C on the left denotes a piecewise smooth, Jordan 

curve contained in the (sufficiently small and hence, without loss of generality, 

simply connected) parametric (w+. u?)-domain on which the surfaces (25) 

are given, while D on the right of (35) denotes the interior of C. This is 

Herglotz’s fundamental identity, proved by him under his C%-assumption for 

(25). It will be shown that (35) holds under the present C?-assumption also. 

The C?-theorem on closed, convex surfaces, as announced in Section 8, will 

then follow from the “local” identity (35), since the balance of Herglotz’s 

proof remains unaltered. 

10. The derivation formulae of Gauss and Weingarten, 

(36) Xin = + 

and 

(37) ior gFhiaX p 

(cf. [3], p. 758), where the T#,, = T*,,(w, wu?) are Christoffel’s symbols, hold 

on every surface of class C*. On the other hand, the Mainardi-Codazzi 

equations (representing that part of the integrability conditions of the system 

(86)-(37) which remains after a satisfaction of the Theorema Egregium) 

cannot be applied on a surface of class C*, since they contain the derivatives 

of the functions hi, whereas the latter functions are of class (* only if the 

surface is of class C*. It was however shown in [3], pp. 759-760, that if the 

surface is of class C*, then the Mainardi-Codazzi equations still apply in their 

“integrated ” form, 

(38) f higdu* — du'du?, (4 == 1, 2), 

Cc D 

209 
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where the (“arbitrary”) Jordan curve C and its interior D are restricted 

only by the assumptions which were specified for (35) above. 

Let (36’), (37”), (38’) denote the relations which result from (36), (37), 

(38) if X, N, hi, are replaced by X’, N’, h’x,, respectively (note that IY —T, 

since ix == Jix) ° 

Since the function (29) is of class (1, an application of the general 

Lemma of [3], p. 761, shows that (38) implies the relations 

(39) f igdut f f gA,dutdu?, (i=1,2), 
Cc D 

if the (continuous) functions A,, A, are defined by 

(40) A; = (-- 1)4(T4 sh’ oh’ j 

(so that 7 = 2 or j = 1 according asi = 1 ori = 2). The same general lemma 

also shows that the partial derivative, 7, — 0r/0u", of the first component of 

the vector X = (z, y, z) can be “ inserted ” into the case i = 1 of the relation 

(39), and that this leads to 

f 22h’ = f (Arte + — 22) dutdu?. 

D 

Similarly, 

oqgdut = f f (Ast, + — dutdu?. 

D 

Hence, by subtraction, 

(41) — ah’ — J f -Jdutdu?, 
D 

where the expression on the right is the difference of the double integrals 

occurring in the preceding two formulae. 

Corresponding to X (2, y,z), let N = (a,b,c). Then, according tu 

(36), 
= + ahix. 

Hence, if T22 are multiplied by g*h’s2, — gh’11, respectively, 

it is seen, by addition, that the difference which on the right of (41) was 

indicated by [- - -] can be written as 
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since the functions A;, A, occurring in the definition of the difference [- - -] 

are given by (40). 

According to (34), the preceding representation of [- - -] can be written 

as [-- -]—2gaJ. Thus (41) becomes 

(42) f g* — x2h’,qdu*) ff 2gaJ dudu?, 

Cc D 

where a denotes the direction cosine defined by NV = (a,b,c). If the general 

Lemma of [3], p. 761, is applied again, this time in order to “insert ” x as a 

factor gaJ on the right of (42), it follows that (42) implies the relation 

f + — tah's2) — — 
D 

But z,a can here be replaced by any of the respective components of 

X = (x,y,z), N = (a,b,c). Hence the last relation, when compared with 

the definitions (28) and (32), completes the proof of (35). 

11. It was mentioned at the end of Section 9 that it is sufficient to 

prove (35) under the C®-assumption in (25). Actually, since the end of 

Herglotz’s argument depends on an appeal to the fundamental uniqueness 

theorem of local differential geometry, and since the classical formulation 

of this theorem (Bonnet) is confined to surfaces of class C*, for the sake 

of completeness the balance of the proof will also be given. (Incidentally, 

it will be worth noting that, just as the Gauss-Bonnet representation of the 

genus, the classical formula for the surface average of the mean curvature 

and Herglotz’s generalization of this formula for the “ mixed ” case, namely 

(48) and (44) below, are not restricted to surfaces of genus 0; cf. [4], p. 128.) 

Let F and F” be two orientable, closed, homeomorphic, locally C?-isometric 

surfaces of class C?. Draw on F an oriented net, and on J” the corresponding 

net, of piecewise smooth Jordan curves in such a way that, if S,,---,S, 

and S’,- - -, 8’, denote the interiors of these (oriented) Jordan curves, then, 

on the one hand, every pair (S, S’) = (Sj, 8’;), where 7 =1,---,h, has a 

C?-representation of the form (25) and, on the other hand, (35) holds for 

every C = C; and for the corresponding D = Dj, where D; denotes the (u’, u?)- 

domain to which S; and 8’; are referred in (25). Then, if (35) is applied 

to every j, summation with respect to j gives 

211 
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0 -ff g{(N-X)J + H}dutdu’, 
E 

where H = D,+ +--+ Dy. This step assumes that the line integrals, which 

are cancelled by the addition, have a geometrical meaning (in the sense that 

they are independent of the different parametrizations, used on the different 

pieces S;), which, however, can easily be ascertained. 

Let dF and dF” denote the surface elements on F and F’, respectively, 

and put 

(43) p=N-X. 

Then the preceding integral relation can be written in the form 

(44) f f — — f f HaF’, 

since, according to (29) and (28), both dF and dF’ are identical with gdu'du?. 

It follows that 

(45) rf LpdF = f f war — f HAF, 
F F’ F 

if Z is defined by 

(46) 29°L = det (h’ ix, — hix) (g? = det gx > 0). 

In fact, it is seen from (31)-(33) and (46) that 

(47) K—J=L. 

But if F” is particularized to F, then (46) reduces to L —0, hence (47) to 

K =J, and therefore (44) to 

(48) f f KpdF — f HaF. 

Finally, (45) follows by subtracting (44) from (48) and using (47). 

12. The closed, orientable surfaces F, F’ have thus far been of arbitrary 

genus. It will be supposed that the Gaussian curvature K = K(u', u?) is 

positive throughout or, more generally, that 

(49) K > 0 almost everywhere 

(hence K = 0 everywhere) on F and/or F”. Then, according to Hadamard, 
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the genus must be 0, and so F, F” are closed convex surfaces. In particular, 

since (43) is the function of support for FP, it can be assumed, (by choosing 

the origin of the X-space at a point which is not on Ff) that p= p(u', wu’) 

is positive at every point of F. 

A repetition of the argument used by Herglotz now shows that 

(50) h’ ix — hix 

holds as an identity. His proof of this identity can be modified as follows: *° 

It is readily verified that if adagr*x®, bagr*x® are two positive definite, binary, 

quadratic forms of common determinant, det aj, — det bi, > 0, then their 

difference is either an indefinite or the null form (i. e., either det(ai,— Dix) < 9 

or (dix) = (bi) must hold). 

In view of (49) and (31), the assumptions of this alternative are satisfied 

by dix = hiz(us,u?), bin u?) at almost every point (u',u?). It 

follows therefore from (49) that, if a (u+, w)-set of measure 0 is disregarded, 

then either Z < 0 or (50) holds at each of the remaining points (in particular, 

LI = 0 holds everywhere). Hence it is seen from (49) and (45), where p > 0, 

that 

(51) 0= f war—f nar. 
F’ F 

For reasons of symmetry, (51) must remain true if F and F” are interchanged. 

Consequently, the last inequality must actually be an equality. It follows 

therefore from (45) that 

(52) tpar 
F 

Since L = 0 and p> 0 hold everywhere, (52) implies that LZ —0 holds 

almost everywhere, and therefore, by continuity, everywhere. In view of (46), 

this proves (50). 

In order to complete the proof of the theorem, it is only necessary to 

apply to (28) and (50) the local uniqueness theorem of [3] (Theorem (I), 

p. 760), which states that the first and second fundamental forms of a surface 

S of class C? determine § uniquely. 

THE JOHNS HOPKINS UNIVERSITY. 

10This variant of the corresponding explicit calculation in Herglotz’s paper seems 

to be well-known. It was used by Professor Heinz Hopf in a lecture given this spring 

at Johns Hopkins, and it was known to the writer since he first read Herglotz’s paper. 

Cf. also L. Bianchi, Vorlesungen iiber Differentialgeometrie (ed. 1899), the last quarter 

-of p. 293 and formula (8*). 
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ON UNSMOOTH TWO-DIMENSIONAL RIEMANNIAN METRICS.* 

By Puitip HarTMAN.** 

This paper will be concerned with two quite different questions. Part I 

will deal with the question of the embedding into 3-dimensional Euclidean 

space a 2-dimensional Riemannian metric which has the Tchebychef normal 

form du? +2 cos ¢ dudv + dv”, where it is assumed that this form has the 

“curvature” —1, but it is only assumed that ¢ is continuous. It will be 

shown that such an embedding exists and is unique, up to Euclidean move- 

ments, when u = const. and v = Const. are required to be asymptotic lines. 

In Part II, it will be shown that if a positive-definite form gi,du‘du*, 

where i,k 1,2, of class CO’ is transformed into another form G,,dU+dU* 

with the same properties by a transformation u‘ = u‘(U*', U*) of class C’, 

then the transformation is necessarily of class 0”. This result is used to 

establish the uniqueness statement of Part I and has other applications, cf. 

§ 7 below. 

Part I. 

1. Let z= 2z(z,y), defined in a vicinity of (z, y) = (0,0), be a surface 

S of class C’” and possess the Gaussian curvature K ——1. It has been 

shown [4] that these conditions on S are sufficient to assure the existence of 

a transformation, defined in a vicinity of (u,v) = (0,0), 

(1) t= 2(U,v), y= y(U, v), (x(0, 0) = (0,0) =0), 

of class C’, with non-vanishing Jacobian and with the properties that, in the 

resulting parametrization XY = X(u, v) = (x(u, v), y(u, v), 2(x(u, v), y(u, v))) 

of S, the arcs u = const. and v = Const. are asymptotic curves and the squared 

element of arc-length on S§ has the Tchebychef form 

(2) ds? = gi,(u, v)dutdu* = du? + 2 cos ¢ dudv + dv?, (ut, = (u,v). 

Since det (gi) — sin? ¢, it follows that 

(3) sing ~0, ($= ¢(u, v)). 

* Received February 1, 1951. 

** John Simon Guggenheim Memorial Foundation Fellow, on leave of absence from 

The Johns Hopkins University. 

215 



216 PHILIP HARTMAN. 

Finally, the function ¢ satisfies the Hazzidakis relation 

Ug Ve 

(4) [¢] = ff v)dudv, where uy 

is any rectangle on which (1) is defined and 

(5) = $(t%1, V1) — V1) + (Us, V2) — V2). 

Since (1) is of class C’, the function ¢ is continuous. It was also shown in 

[4] that ¢ is of class C’ if and only if z—<2z(z,y) is of class C’’. (The 

existence of surfaces S:2—2(z,y) which are of class C’”, without being of 

class C’”, and which are pseudo-spheres (K —-—1) will be clear from the 

considerations below.) 

In this paper, a converse of the above result will be considered. 

(*) Let 6=—¢(u,v) be a continuous function on the rectangle 

(6) R:|u|Sa, |v| <8, 
satisfying the inequality 0 << ¢ <2 and the relation (4) for all rectangles in 

(6). Then, for sufficiently small x, y, there exists one and, up to Euclidean 

movements of the (x,y, 2z)-space, only one pseudo-sphere S:z2—2(x,y) of 

class C” which belongs to 6(u,v) in the sense of the paragraph above. 

2. In order to make clear the content of this assertion, suppose first 

that ¢ is of class C’, then (4) is equivalent to the existence and continuity 

of the second mixed partial derivative du, = ry, and to 

(7) buy = sin ¢. 

Suppose further that ¢ is even smoother, say of class C”, then one expects 

the corresponding ¥ — X(u,v) to be of class C’”. Since u—const. and 

v = Const. are to become asymptotic arcs, the diagonal elements h,,(u, v), 

hoo(u,v) of the second fundamental matrix will be zero. Also, K=—1 

means det(hi,) det(gix) —=—sin*?¢; so that Define 

= hix(u, v) by 

(8) hixdutdu® = 2 sin dudv. 

The other choice, hi,du‘du’ — — 2sin ¢ dudv, merely corresponds to the 

enumeration (u',u?) = (v,u) (rather than to (ut, u?) = (u,v)). 

It is easily verified that (gix) and (hi) given by (2) and (8), respec- 

tively, which are of class 0”, satisfy the integrability conditions of Gauss and 

E 
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Mainardi-Codazzi by virtue of (7). Thus, the standard theorem of Bonnet 

supplies a surface S: X = X(u,v) of class C’” on which (2) and (8) hold. 

That S, in a Cartesian parametrization, say 7 = 2(z, y), is of class C’” follows 

from the considerations in [4], § 14. 

The variant of the theorem of Bonnet, proved in [3], shows that if ¢ is 

of class C’, then there exists an S:X — X(u,v) of class C” on which (2) 

and (8) hold and which, by [4], §14, is of class C’” in a suitable para- 

metrization. 

But if ¢ is only continuous, one cannot write down all of the equations 

in the linear total system, consisting of the derivation formulae of Gauss and 

Weingarten, for which the theorem of Bonnet and its variant supply a solution. 

In fact, these equations in the smooth cases of (2) and (8) are 

(9) Xuu = Xyy (Xy cos 

(10) Xu = N sind 

and, if N N(u,v) denotes the unit normal vector, (Xu, Xy)/|(Xu, Xv) |, 

(11) Ny= (X,cos¢—X,)/sin ¢, N,= (X, cos — X,) /sin ¢, 

while (9) involves partial derivatives of ¢. 

The existence assertion in (*) above will be proved by an approximation 

process. The uniqueness assertion will depend on the result of Part II, below. 

3. Before beginning the proof, it can be remarked that the assertion 

(*) goes beyond the existence statements just mentioned; that is, there 

actually exist functions ¢—¢(u,v) satisfying (4), which are continuous 

but not of class C’. This can be proved by the existence proof of Picard for 

the hyperbolic differential equation (7). Let a—a(u) and B = B(v) be con- 

tinuous functions for | | Sa, | v | S respectively, satisfying «(0) 

Then there exists one and only one continuous function ¢ on the rectangle 

(6) satisfying (4) and ¢(u,0) —a(w) and 4(0,v) —£B(v). This follows 

by considering the successive approximations yo(u, v) = a(u) + B(v) — «(0) 

and 

Yn(U, V) = Yo(u,v) + ff SIN for n—1,2,-- >. 

0 

The standard calculation shows that ¢ = lim yp, as n>, exists and is the 

desired function. Clearly, ¢(u,v) is of class C’ if and only if the given 

functions a(u), B(v) are. 

This proof also implies that if a ¢ is given, then there exists a sequence 
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of functions ¢'(u, v),¢?(u,v),* - - on (6), which are smooth, satisfy (4) 

(that is, (7) ) and which, as noo, tend uniformly to ¢(u,v). In fact, it is 

sufficient to choose sequences «"(w), B"(v) of polynomials, which satisfy 

a”"(0) = 8"(0) and which approximate uniformly the respective functions 

a(w) =(u, 0), B(v) = (0, v), and to let ¢"(u,v) be the unique solution 

of (7) belonging to the initial conditions ¢"(u, 0) = a" (uw), v) = B"(v). 

4. In order to prove the existence statement in (*), let 6 = (u,v) be 

a given continuous function on (16) satisfying (4) and 0<g¢<7m. Let 

¢', ?,- - - be a sequence of approximating smooth functions, described above. 

By virtue of uniform convergence, 0 < $"(u,v) <a holds for all (u,v) on 

(6) and for all sufficiently large n. By discarding a finite number of the 

¢', ¢?,- - - (and renumbering the sequence), it can be supposed that this 

inequality holds for all n. 

Let (2n), (%n), (8n),° denote the relations (2), (7), (8),- -, respec- 

tively, in which ¢ is replaced by ¢". By the theorem of Bonnet, there exists 

a unique smooth surface 8": X = X"(u,v) for which (2,), (8,) hold and 

for which 

X" (0, 0) =0, X,"(0,0) = (1, 0, 0), 

(12n) 

X,"(0, 0) = (cos o"(0, 0), sin ¢"(0, 0), 0). 

Note that X"(u,v) exists on the entire rectangle (6), since the total system 

involved, (9,)-(11,), is linear. 

Let it be granted for the moment that the sequences X,}, Xy7,- - - and 

Xy', are equicontinuous on (6). These sequences are obviously 

bounded since (2,) implies | X," |= | X,"!==1. Hence, by the theorem of 

Arzela, it is possible to select a subsequence of the surfaces X7, X?,- - -, which 

will again be denoted by X1, X,- - -, such that X*, X?,- - - and its sequence 

of first order partial derivatives converge uniformly on (6), as n—>0. Let 

S:X —X(u,v) denote the limit surface. 

Clearly, on the surface S, the squared element of arc-length is given by 

(2). Furthermore, if VN — N(u,v) is the unit normal vector, then N is of 

class C’. In fact, (11) holds as a consequence of (11,) and the selection 

process above. In the same way, it is seen that X,, — X,, exists, is continuous 

and satisfies (10). 

The initial conditions (12) imply that the Jacobian of (1) does not 

vanish at (u,v) —(0,0), so that S has a representation of the form 

z= 2(2,y), where z= 2z(z,y) is of class C’ in a vicinity of y) = (0,0). 

| 
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But since N = + (22, 2, —1)/(1-+ 22? + 2,7)4 is of class C’ as a function 

of (u,v), and hence as a function of (z,y), it follows that z= <2(z,y) is of 

class C”. The relations (4) and (10) and the theorem of Gauss-Bonnet, as 

applied in [4], § 15, show that the curvature of § is identically —1. Finally, 

a point P of § and an asymptotic direction at P determine a unique asymptotic 

arc on S; [2], §1. Hence, the asymptotic arcs on 8S", w=—const. and 

v = Const., tend to those of 8. Consequently, the parameter lines u = const. 

and v =Const. on § are the asymptotic arcs. 

5. Thus, in order to complete the existence statement contained in (*), 

it remains to verify the hypothesis made in the last section, that the sequences 

X,),Xu7,- and X,?,- - are equicontinuous, by virtue of the fact 

that $1, ¢’,- - - is. To this end, the differences | X,"(u + h, v)—X,"(u, v)|, 

| Xy"(u, v +h) —X,"(u, v)| and those belonging to X," will be estimated 

in terms of those belonging to ¢” (and in terms of the lower bound for sin ¢"). 

Since n is fixed, the notation will be simplified by omitting n. 

It will be sufficient to consider the differences belonging to X,, as those 

belonging to X, can be treated similarly. Let m satisfy 

(13) sin (u,v) = m> 0 for all (u,v) on R. 

If (u,v), (u,v-+h) are two points of R, it follows from (10) that 

(14) | Xu(u,v +h) —X,(u, v)| S| h| 

since | V | —1. 

If (u+h,v), (u,v) are two points of R, let Af denote the difference 

f(u+h,v) —f(u,v), where f is any (scalar or vector) function on R. The 

difference AX, will be appraised by a method similar to that used in [4], § 13. 

Let C be a (fixed) number to be specified below and let « >0 be any 

number satisfying 

(15) 2Ce < m3/4, 

where m satisfies (13). Corresponding to e, there exists a number § = 6, > 0 

with the property that 

(16) <eif <8 

for all (u,v), (w-+h,v) in R. For convenience later, it can be supposed 

that § is chosen so small that 

(17) 28 < em. 
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It will be shown that 

(18) | AX, | < 8Ce/m? if |h| <8 

for all (u,v), (u+h,v) on R. If (18) is verified, then it follows from the 

definition (16), (17) of 8, that the existence statement in (*) is proved. 

Let 

(19) A,—X,(u,v) + 4AX,, A, = X,(u, v), 0). 

If these three vectors are linearly independent, that is, if 

(20) det A2, As) ~0, 

then there exist three unique numbers a = %(u, v, 2), where 1 = 1, 2, 3, such 

that 

(21) AX, + GAs 

If (21) is multiplied scalarly by A, Az, Az, respectively, there results a 

system of linear equations for @,, %:, %3. It will be seen that these equations 

are 

(22,) O—a,(A,- Ai) + Ax) + 

(222) Acos?—X,(u-+h, = As) + As) + A2), 

(223) —X,(u+h, v)- AN a,(A,- As) + As) + As). 

The right-hand sides of these equations are obvious. The left-hand sides can 

be verified as follows: the left-hand side of (22,) is A; —=A(| |?) 

= A(1) 0; the left-hand side of (222) is 

AX, Az =A(X,y* Az) —Xu(u+h,v) - AAs 

=Acos¢— Xy(u+h,v) - AX; 

finally, the left hand side of (223) is 

AX,: As = A(X,: As) —Xy(u+h,v)- AAs 

= A(0) —Xy(u+h,v)- AN. 

It is clear from (10), (11) and (13) that 

(23) | AX, and | AN | =2|h|/m. 

Hence, the terms on the left-hand sides of (22,)-(22,) are majorized by 

| Ap] -+2]|h|/m. Since the elements of the matrix (A;-A;) are majorized 
by | A; | | A; | < 2-2 = 4, it follows that the two rowed minors are majorized 
by 32. Hence, if (20) holds, 

| | S 96(| Ad | +2] |/m)det*( Aj, Ao, As), 

| 

i 

| 

| 
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since det?(A,, As) = det(A;-A;). Hence, (18) implies 

(24) | AX, | det®(As, As, As) | |/m), 
if C is sufficiently large, say C576. Hence, by (16) and (17), 

(25) | AX, | det?(Ai, A2, As) S C(e + 28/m) S 2Ce 

if <6. 

It will now be shown that 

(26) | AX, | <m if |h| <8 

for all (u, v), (w+ h,v) in R. By the definition (19) of A, As, it is seen that 

the vector product (A;, Az) is NV sind + $(AX,, X,) ; so that det(A:, Ao, As) 

is sin + $det(AX,, X,, N). Consequently, 

| det(A1, As, As)| = m—4| AX, |. 

Suppose, if possible, that the first inequality in (26) is violated for a pair of 

points (u-+h,v), (u,v) of R, where |h| <8 Clearly, it can then be 

supposed that the first inequality sign in (26) can be replaced by equality if 

(u-+h, v), (u,v) are suitable chosen. By (27), | det(A1, As, As)| 24m > 0; 

and so, (25) implies | AX, | S (2Ce)/(4m)*. By (15), this means | AX, | < m, 

which contradicts the assumption | AX, |—m. Consequently, (26) holds. 

Hence, (25) and (27) imply (18) for all (u+h,v), (u,v) in R. This 

completes the proof of the existence statement in (*). 

6. There remains to prove the uniqueness statement contained in the 

assertion (*). Let and 2 = Z2(X2, y2) be two surfaces 

satisfying the statement of the first paragraph of §1, where the function 

¢=¢(u,v) for both surfaces is the given ¢. It will be verified that S, and 

8, are identical, up to a Euclidean movement. 

In the (21, y:)-parametrization of S,, the squared element of arc-length 

on is 

(28) ds* = (1+ p*)dz,? + 2pqda,dy, + (1 + q*) 

where p = 02,/0x, and q = 02,/0y,. The surfaces S,, S. have parametrizations 

X = X, (u,v), X = X.(u,v) of class C0’, in which (2) holds with the same 

given Let = Y1), = Y2(X1, y1) be the result of the transformations 

(22, Yo) —> (u,v) > (21,41). Thus 8, has a parametrization of the form 

(29) So: = Yi), Y = Yr), = 
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which is of class C’. In the (z,, y,)-parametrization, it follows from the 

standard transformation rule for ds*, that (28) holds on S;. Since the 

coefficients in (28) are of class C;, it follows from (**) in Part II below 

that the transformation (21, y:) > (Z2, yz) is of class C’” ; and so the (2, y,)- 

parametrization of both S, and 8S, are of class C”. _ 

It can easily be verified that, if the second fundamental form in the 

(u, v)-parameters are calculated formally by the standard transformation rule 

(or equivalently by, = — Xy° Nu, his = hoy = — Nv, hos = Xy- Ny) 

for both 8, and S>2, then hi,du‘du* = + 2 sin ¢ dudv; and it can, therefore, 

be supposed that (8) holds. Hence, in terms of the (2,, y,)-parameters, S, 

and S. have the same second fundamental form. 

Thus, the surfaces S,: z= 2,(%1, y,) and (29) are of class 0” and have 

the same first and second fundamental forms. It follows from the uniqueness 

theorem in [3], § 2 that 8, and S; are identical, up to a Euclidean movement. 

This completes the proof of the assertion (*). 

Part II. 

7. In this part, the following theorem will be proved: 

(**) Let (gix) = u?)), where 1, k = 1, 2, be a positive-definite 

symmetric matrix of class C’ in a vicinity of (ut, uw?) = (0,0). Let 

(30) ut = ut (U1, U?), where 1 = 1, 2, (ut(0,0) —0), 

be a transformation of class C’ in a vicinity of (U1, U?) = (0,0) with a non- 

vanishing Jacobian carrying 

(31) ds? = gi,du‘du® 

(32) ds? = Giz,dU*dU". 

If (30) has the property that the symmetric matrix (Gix) = (Gix(U4, U*)) 

is of class C’, then the transformation (30) is of class C’. 

This theorem is a generalization of the lemma of [4], § 12. In addition 

to the application of (**) in § 6, above, several other consequences of (**) 

can be mentioned: 

(i) From Wintner’s discussion [9] of the notion of isometry in differ- 

ential geometry, the usefulness of (**) is at once apparent. In fact, (**) 

and its analogues (cf. the remark at the end of this section) show that if 

two surfaces of class C", where n= 1, are isometric (by virtue of a trans- 

( 

] 

( 
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formation of class C1), then they are isometric by virtue of a transformation 

of class C”. This answers the question raised by Wintner [9], end of § 4, 

concerning the interpretation of certain standard theorems in the theory of 

surfaces. 

(ii) If the coefficients gi, of (31) are of class C’ and (31) possesses a 

curvature K = K(u,v) in the sense of Weyl [7] (cf., [6]) and K is of class 

C’, then it follows from [1], § 6 and from (**) that it is possible to introduce 

local geodesic parallel coordinates (U*, U?) and that the transformation (30) 

is of class C”’. (For contrast, it can be mentioned that such a transformation 

(30) need not exist if a bounded curvature K does not exist (cf. [1], § 2); 

the transformation (30) exists and is of class C’ when a bounded curvature 

K does exist (cf. the proofs of Theorems 1 and 2 in [1] and (III) in [5]), 

but need not be of class C” if K is not of class C’ (cf. [2]). 

(iii) If the surface § has a parametrization of class C” in terms of 

some parameters, say (u',u?), and if (30) is a transformation of class C’ 

such that the first fundamental form G;,dU‘dU* and formal (cf. § 6 above) 

second fundamental form Hj,dU‘dU* are of class C’, then, by (**) and the 

considerations of [4], § 14, the surface S is of class C’” in a suitable para- 

metrization, say 2 = 2z(z, y). 

To illustrate the principle (iii), let S possess a negative curvature of 

class C’, then it is possible to introduce (locally) the asymptotic lines as 

coordinate curves U* = const., U? = Const., and the transformation (30) is 

of class C’, [4], §6. If the coefficients in the resulting squared element of 

arc-length (32) are of class C’, then the above principle is applicable, since 

Hy, = He. =0 and = — det(Giz)/K > 0 are of class C’. Thus, the 

asymptotic line parametrization of a surface (of negative curvature K of 

class C’) cannot be of class C’” unless the surface has some parametrization of 

class C’””. The case K =—1 of this illustration is proved in [4] by using 

the lemma, [4], § 12, mentioned above. 

As another illustration of (iii), let S possess distinct principle curvatures 

of class C0’, then it is possible to introduce (locally) the lines of curvature as 

coordinate curves Ut = const., U? = Const., and the transformation (30) is 

of class C’, [4], §17. If the coefficients in the resulting squared element of 

arc-length (32) are of class C’, then the above principle is applicable, since 

Hy. =0 and H,;/G1:, H22/G22, being the respective principal curvatures, are 

of class C’. Thus, the line of curvatures parametrization of a surface (having 

distinct principal curvatures of class C’) cannot be of class C” unless the 

surface has some parametrization of class 0’”. 
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Whether or not (**) is true if the symmetric matrix (gx) is either 

n by n and non-singular (instead of being 2 by 2 and positive-definite) will 

remain undecided. (The proof of (**) and this generalization would follow, 

for instance, if it could be shown that the transformation (30) can be approxi- 

mated by smooth transformations in such a way that the Christoffel symbols 

belonging to the forms corresponding to (32) tend uniformly to those 

belonging to (32)). An indication of the truth in the n by n, positive-definite 

case is given by the results in [8]. 

The theorem (**) is obviously false if (gi) is singular. For consider 

the cases u = U, v = v(U, V) and ds? = du? +- 0- dudv + 0- dv? of (30) and 

(31), respectively. The corresponding form (32) is ds? = dU? + 0-dUdV 

+ 0-dV?, while v(U, V) need not be of class 0”. 

The replacement of C’, C” by C™, C™*, respectively, where m > 1, in 

(**) leads to a correct but easily proved theorem, in view of the transformation 

rule for Christoffel symbols. The difficulty in the proof of (**) is to establish 

the validity of this rule when m = 1. 

8. Proof of (**). Since the coefficient functions of both (31) and (32) 

are of class C’, the Christoffel symbols of the second kind, yjx¢ = yj,‘ (u’, u*) 

and Ty. = Tj,'(U*, U?), belonging to (31) and (32), respectively, exist and 

are continuous. The two systems of differential equations 

(33) + 0, where 1 = 1, 2, (‘= d/ds), 

and 

(34) + = 0, where i 1, 2, (’=d/ds), 

define the geodesics belonging to (31) and (32), respectively. Formally, it 

cannot, however, be verified that the solutions of (34) correspond, by virtue 

of (30), to solutions of (33), and conversely. (Of course, such a verification 

could be made by considering the geodesics as extremals (but not “ mini- 

mizing ” curves, cf. (II) in [5]) of a calculus of variations problem. ) 

If a point (u',u?) and/or (U',U?) is sufficiently near (0,0), then 

there exist arcs minimizing the distance, in the metric (31) and/or (32), 

between (0,0) and that point (Hilbert). All such arcs are solutions of (33) 

and/or (34); cf. the proof of (I) in [5]. If ut=ut(s) and Ut = U'(s) is 

such a geodesic, where the initial conditions are chosen so that (30) gives 

(35) uv” = where = dut/dU/, 

then both wi(s) and U‘(s) are of class C”’. (Incidentally, not all geodesics 

minimize the distance between sufficiently close points on them; cf. (II) 

in [5]). 
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Corresponding to a geodesic ut ut(s), = Ui(s), related by (30) 

and (35), consider the linear differential equations 

(36) wv + =0, where 1 = 1, 2 

and 

(37) WY + Ty,*WiU” =0, where 1 = 1, 2, 

with = u?(s)) and —Ty,¢(U'(s), U?(s)) in (36) and 

(37), respectively. A solution W‘— Wi(s) of (37) is a field of parallel 

vectors along the geodesic U‘ = U‘(s). Hence, the scalar products Gi,W*W*, 

Gi,.W*U*”, which are first integrals of (37), are independent of s. But scalar 

products are invariant under transformations of class C’; and so 

(38) w'=u;'WI, where 1 1, 2, 

with u;* = u;'(U*(s), U?(s)), is a solution of (36) and, in particular, is of 

class C’. 

It is clear from (34) and the fact that G,U”U"” —1 along solutions 

of (34), while (32) is positive-definite, that | U*”’” |< Const., whenever 

(U1(s), U?(s)) is sufficiently near (0,0), where Const. is independent of the 

geodesic U‘ = U‘(s). This implies that if Ja is a geodesic arc U* = U‘(s) 

= U‘(s,AU*) joining (0,0) and (AU*,0), where | AU? | 0 is sufficiently 

small, then (U*’(s), U”(s)) tends, uniformly on Ja, to (G,14(0,0),0), as 

AU*+-—>0. Similarly, if W‘— W‘(s) = Wi(s,AU*) is a field of parallel 

vectors on Ja determined by initial conditions (W,*, Wo?) at (0,0), which 

are independent of AU*, then (W*(s), W?(s)) tends, uniformly on Ja, to 

(W.*, Wo”), as AU—>0. Finally, if As is the length of Ja, then As/AU? 

G:3(0,0), as AU’ 0. 

Let the geodesic arc Ja be chosen so that ut = ui(s), determined from 

(30), is a solution of (33). Let fo, where f is w*, u;*,- - -, denote the value 

of f at (0,0) and let Af denote the difference between the values of f at the 

points (AU*,0) and (0,0). Then, by (38), 

(39) Aw? = (Au;*) + 

By (37) and the mean-value theorem of differential calculus, 

AWS = — (Tami W"U™ As, 

Where the coefficient of As is evaluated at some intermediary point on Ja 

(depending on j and AU‘). By the remarks of the last paragraph, AW//AU! 

tends to Wo", as Similarly, Aw‘/AU? tends, as AU! 0, to 

— By (35) and (38), the latter limit is — 
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Hence (39) implies that (Au;‘/AU*) W,/ tend to a limit, as AU'—>0. Since 

W,/ is arbitrary, it follows that, as AU’ —> 0, the quotient 

= 0) — uj#(0, 0)}/AU? 

tends to the limit Tj:"Un* — yrm*uf'u,™, evaluated at (0,0). Since AU? can 

be replaced by AU? in this argument, and (0,0) by any point (U?, U?) 

sufficiently near (0,0), it follows that the second order partial derivatives of 

the functions in (30) exist and can be calculated from the standard trans- 

formation rule for Christoffel symbols of the second kind. Consequently, 

(**) is proved. 

PARIS, FRANCE. 
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ON THE KINEMATIC FORMULA IN THE EUCLIDEAN SPACE 

OF N DIMENSIONS.* 

By SHIING-SHEN CHERN. 

Introduction. The idea of considering the kinematic density in problems 

of geometrical probability was originated by Poincaré. It was further exploited 

by L. A. Santald and W. Blaschke in their work on integral geometry [1], 

culminating in the following theorem: 

Let Xo, &1 be two closed surfaces in space, which are twice differentiable, 

and let Do, D, be the domains bounded by them. Let Vi, yi = Ki/4am be the 

volume and Euler characteristic of D; and let Ai, M; be the area and the 

integral of mean curvature of Suppose fixed and 3, moving. 

Then the integral of K(Do:D:) =41yx(Do- Di) over the kinematic density 

of 31 is given by the formula 

(1) (Do: = 80? (VoK, + + Modi + KoV:). 

This formula includes most formulas in Euclidean integral geometry as 

special or limiting cases. The purpose of this paper is to apply EK. Cartan’s 

method of moving frames and to derive the generalization of this formula 

in an Euclidean space of n dimensions. By doing this, we hope that some 

insight can be gained on integral geometry in a general homogeneous space. 

Moreover, one of the ideas introduced, the consideration of measures in 

spaces which are now called fiber bundles, will most likely find further appli- 

cations. The main procedures of our proof have been given in a previous 

note [2]. 

We consider a compact orientable hypersurface %, twice differentiably 

imbedded in an Euclidean space EF of n (=2) dimensions. At a point P 

of there are n —1 principal curvatures xg, 1,- - -,n—1, whose i-th 

elementary symmetric function we shall denote by S;, +=0,---,n—1, 

where Sy = 1 by definition. Let dA be the element of area of 3, and let 

(2) 

These M; are integro-differential invariants of 3. In particular, M, is the 

* Received May 10, 1951. 
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area and M,_, is a numerical multiple of the degree of mapping of & into 

the unit hypersphere defined by the field of normals. 

Take now two such hypersurfaces 3, 31, whose invariants we distinguish 

by superscripts. The volume of the domain D; bounded by 3; we denote by 

Vi,i=0,1. Let 3, be fixed and 3, be moving, and let 3, be the kinematic 

density of 3,. We suppose our hypersurfaces to be such that for all positions 

of %, the intersection D,- D, has a finite number of components. Then the 

Euler-Poincaré characteristic x(D)-D,) is well defined. If I,_, denotes the 

area of the unit hypersphere in F and if 

the kinematic formula in E is 

(4) fK(Do-D:)3: 
1 n—2 

MV; +- + n k=0 :) My 

where 

(5) K (Dy: D:) = D,). 

For n = 3 this reduces to the formula (1). The formula for n= 4 is 

(6) fK(Do- 

= 167*(M3,V, + + + MOM, + 

1. Measures in spaces associated with a Riemann manifold. We shall 

first review a few notions in Riemannian geometry, in a form which will be 

useful for our later purpose. 

Let M be an orientable Riemann manifold of class = 3 and dimension n. 

Associated with M are the spaces B, (hk =1,- - -,) formed by the elements 

Pe,- - - e,, each of which consists of a point P of M and an ordered set of h 

mutually perpendicular tangent unit vectors e,,- --,e, at P. When h—n, 

such an element will be called a frame. In the current terminology B, is a 

principal fiber bundle over M with the rotation group as structural group 

and B, are the associated bundles [3]. We shall introduce a measure in J). 

Since B, is clearly an orientable differentiable manifold, this can be done by 

defining an exterior differential form of degree 4(h-+1)(2n—h)(= dim of B;). 

There is a natural mapping y,: B, — B, defined by taking as the image 

of Pe,: the element Pe,- It induces a dual homomorphism of 

the differential forms of B, into those of B,. This process has in a sense a 

converse. In fact, let 

(7) = s, At+1isrssn 
8 
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be a rotation of the last »—h vectors. A differential form of B, which is 

invariant under the action of (7) can be regarded as a form of By. 

The well-known parallelism of Levi-Civita can be interpreted as defining 

a set of n(n-+1)/2 linearly independent Pfaffian forms in B,, which we 

shall denote by wi, wi;(—— oj), 11,7 Sn. To give it a brief description 

[4] we start from the following useful lemma on exterior forms: Let oj; be 

linearly independent Pfaffiian forms, and let wiz;——-ay be Pfaffian forms 

such that * 

(8) 

Then mj—=0. In fact, it follows from (8) that 

n 

T= D Apion. 

Then az is skew-symmetric in its first two indices, because the wr are, and 

is symmetric in its last two indices, on account of (8). Therefore aj, —=9 

or 0. 

For geometric reasons we denote by dP the identity mapping in the 

tangent space at P, which maps every tangent vector into itself. Then dP 

can be written in the form 

(9) dP =D uQei, 

where the multiplication is tensor product, and the o are Pfaffian forms 

in B, and are linearly independent. The fundamental theorem on local 

Riemannian geometry asserts that there exists a uniquely determined set of 

Pfaffian forms ;, i; in By, linearly independent, which satisfy (9) and 

j 

In fact, the uniqueness follows from the above lemma. 

For our purpose we shall study the effect of the rotation (7) on these 

forms. Denote the new forms by the same symbols with asterisks. Clearly 

we have 

(11) = We, == Usrids, 

Taking the exterior derivatives of both sides of these equations and making 

use of (10), we get 

* We shall, following Bourbaki, use wedge product to denote exterior multiplication. 
It will sometimes be dropped, when the meaning is clear. Parentheses will be used to 

denote ordinary products of differential forms. 

k=1 

t 

& 
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/\ (wga* — + > o,* (@ro* —> Usrsq.) = 0, 

(12) 

where ¢,,* are Pfaffian forms skew-symmetric in the indices s,r. The system 

of equations (12) is of the same form as (8), and the above lemma is then 

applicable. It follows that 

(13) fa" = WBa» Wor* = UsrWas- 
8 

If we put 

(14) II Wars 

we see from (13) that Q, is invariant under the action of (7). The same 

is therefore true of the form 

a<B 4 

This form is clearly not identically zero, and we define it to be the density 

in B,. It gives rise to a measure in Bp. 

2. Differential geometry of a submanifold in Euclidean space. As a 

further preparation we need some notions on the geometry of a hypersurface 

in Euclidean space. As no additional complication is involved, we develop 

them for a submanifold V of p dimensions, which is twice differentiably 

imbedded in H. We agree in this section on the following ranges of indices: 

(16) 154¢48ySp, 

Since # is a Riemann manifold, the discussions of the last section are 

valid. In this case B, is naturally homeomorphic to the group of proper 

motions in H. To study V we consider the submanifold of B,, characterized 

by the conditions that Pe V and that the e, are tangent vectors to V at P. 

If we denote by the same notation the forms on this submanifold induced 

by the identity mapping, we have 

(17) == 0. 

From (10) it follows that 

dw, = > we /\ wgr = 0. 
a 

Since the w, are linearly independent, we have 

(18) Ora = ~ A, 
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where the A,gg are symmetric in @, B: 

(19) = 

From these Pfaffian forms it is possible to construct some significant 

“ordinary ” quadratic differential forms. The first is a set 

(20) = 2 (rea) 2 Arap (wus); 

which generalizes the second fundamental form in ordinary surface theory. 

The second is 

(21) = (ra)? = AropAray 

generalizing the third fundamental form. The latter seems to deserve some 

attention. However, so far as the writer is aware, it has not been considered 

in the literature. 

For a hypersurface we have p= n-—1, and we shall write ®, Agg for 

Anog respectively. The roots of the characteristic equation 

(22) 
are called the principal curvatures. 

In the case of the Euclidean space # we can also write ;, w as scalar 

products, thus: 

(23) = dP - Ci, oj = de; 

3. A formula on densities. The situation we are going to consider 

consists of two hypersurfaces 3, in with fixed and 3, moving, which 

intersect in a manifold V"™? of dimension n— 2, such that at a point of 

V" the normals to Xo, 3, never coincide. We denote by ¢, 60, z, the 

angle between these normals and by 3, the kinematic density of 3. An 

(n— 2)-frame on V"* has a density on each of V"*, Xo, 31, to be denoted 

by Ly, Ls, 2, respectively. Our formula to be proved can be written 

(24) sin”? dLolid. 

Throughout this section we shall agree on the following ranges of indices: 

(25) 1Sij,kSn, 1S=A,bSn—1. 

Let Oa,- - -a, be the fixed frame and O’a’,- - - a’, the moving frame. 

For a given relative position between Oa,---a, and O’a’,:-:-a’, let 

Pe,: be an (n — 2)-frame on We complement this into a frame 

Pe,- - -@, such that e, is normal to 3, and also into a frame P’e’,- - - e’, 
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such that e’, is normal to 3, at P, and P’ =P, e&,—e, Between ens, en, 

@’n We have then the relations 

(26) C'n-1 == COS + SiN den, = — SiN + COS hep. 

From this we derive the following useful relation 

(27) de’ ns = dp + den-1 

Let us now express the relations between the frames so introduced by 

the equations 

(28) 
P’ =O’ +- > x’ = >> W 

i k 

We shall denote the differentiation by d’ when O’a’,: - - a’, is regarded as 

fixed. In other words, d’ is differentiation relative to the moving frame. 

Then we have, from (28), 

(29) dO’ = dP — d’P 

It follows that, on neglecting terms in da’,, 

a 4 a 4 

(dP eq) II (dP - 
(30) 

= + 0’, —d'P 
a 

= + sin ea). 

These are to be taken as congruences mod da’; In particular, the last step 

follows from the fact that e’, is normal to 3, at P and that the product of n 

factors involving dP is zero, because the locus of P is a hypersurface 3p. 

In order to get a further reduction of the left-hand side of (24) we 

start from the formula 

k 

From the invariance of the kinematic density under a rotation it follows that 

TI (da’;- = TI ( (des — de’) 
t<Jj 

Then we have 
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t<J 

= [[(de,- eg) ( (deg — d’ea): 0s) ((de’n-1 — d’e’n-1) 
a< 

= [[(de,- eg) [I ((de, — d’eq) 
a<B 

ATI { (dea: — €’n-1) (deg * — * €’n)} 

Cn) 

+ (deg: eg) eg) (deg: — d’ea* &’n-1) 
a<B a 

/\ (deg: €’n)(de’n-s 

+ sin”?  []{(deg: e’4) 
a<A 

TI (dea: es) (da’s- = (dea eg) IT (de’s — d’e%) 
j a<B i<j 

Here the congruences are to be understood mod dP-e,, d’P-e’s. The step 

next to the last follows from the relations 

d’e’4 d’e’n = 0, mod a’P ea, 

which in turn are consequences of (18). In the reduction of the last step 

we make use of the relations (26), (27), and 

de, Cn == — dey, = 0, mod dP : Ca. 

If we notice that 

= [1 - a’,) (da’,- 
4 

and recall the expressions for iw, | ti then (30) and (32) together give 

the formula (24). 

4, Total curvature and Euler characteristic. The success of our pro- 

cedure depends on the possibility of expressing the Euler-Poincaré charac- 

teristic of a domain bounded by a hypersurface = by an integral over 3%, a 

result known as the Gauss-Bonnet formula. Let A be the volume element of 

the unit hypersphere in H, and N* the field of outward normals of 3. By 

means of V* we define the normal mapping of 3. The Gauss-Bonnet formula 

in this particular case can be written 

(33) 

where D is the domain bounded by &, and x(D) is its Euler-Poincaré charac- 

teristic. The left-hand side of this equation is sometimes called the total 

curvature of the domain. 

In our later application the domain D will not be bounded by a smooth 
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hypersurface but will be such that its boundary consists of a finite number 

of hypersurfaces which intersect in a number of submanifolds V"~? of dimen- 

sion n—2. To the integral of A over the outward normals we must then 

add the integral over the vectors belonging to the angle subtended by the 

outward normals of the two hypersurfaces. To express the latter analytically 

let us use the notation of the last section, together with the ranges of indices 

(25). In addition we denote by ba, bd’ the unit vectors in the principal 

directions of %, 3, respectively. For a differentiation on %) we can then 

write 

(34) 64 = dP da, = dey Da, 

where xa are the principal curvatures. Similarly, for a differentiation on %, 

we have 

(35) 404 = de'n* 

x4 being the principal curvatures of 3,. Since the eg lie in the intersection 

of the tangent hyperplanes, we have relations of the form 

A A 

To simplify notation we introduce the unit vectors b, ty in the directions 

of the angle bisectors of en, e’n. Then we have 

(37) en = (cos (sing), = (cos + (sin 
or 

(38) Cn + = 2(cos $¢)d, —en + = 2(sin 4¢) 

Let r be a unit vector between é,. e’n, and 9 the unit vector perpendicular to r 

and in the plane of en, e’n. We can then write 

(39) r = cos ob + sin ofp, ) = — sin ob + cos oW; 

—3¢So5 }¢. 

It follows that the total curvature, i. e., J,_, times the Euler-Poincaré charac- 

teristic of D, is given by 

(40) K —fia ++ JT cos o(db-e,) + sin o(dw-e,) }. 

The product in the second integral admits some further simplification. 

In fact, using (38), we have 

II {cos «(db + sin - e,) } 

= JI {sin($¢ — o)(den ex) + sin($d + )(de’n- eg)}/sin"” ¢. 
a 
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By (36), we get 

A, 

de’n* = 2 (AP eg) 
A; 

It follows that 

(41) {cos «(db eg) + sin - e,)} = DV /sin™ ¢, 

where V is the volume element of Vv, and where 

(42) D | sin(4¢ KACgACBA sin($¢ kK’ AC’ BA |. 

The determinant D can be expanded in the form 

(43) D —o)sin?($$ + 
where 

(44) 

the summation being extended over all independent combinations A,,- - -, Ag 

and B,,- - -,B, of 1,- --,2—1. To prove this we observe that the expan- 

sion of D is of the above form and that the question is only to determine the 

coefficient of x4, in Hy. This coefficient is, up to the 

factor sin’?(4¢ —)sin®?(4¢ +), the value of D, when we set 

, 
= ka, = 1, KB, Kp, = 1, 

and equal to zero otherwise. Writing 

{sin(4¢ —o) = {sin(4$¢ c) ca, 

we have 

- -f - 

D= | CasCBs + ote pt | 
Aq Bp 

- = 
Cu-2,4,° °° Cn-2,Aq Cn-2,B,° °C n-2,Bp 

This shows that the coefficient is actually the one asserted in (43), (44). 

5. Proof of the kinematic formula. Let 3, 3, be two hypersurfaces 

twice differentiably imbedded in F, with %, fixed and 3, moving. We denote 

by D; the domain bounded by 3, 10,1, and suppose that the intersection 

D,- D, consists of a finite number of components F;. The boundary of SF, 

consists of the sets 3,° Do, So° Di, 30°31, so that we can write 

235 - 
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(45) 

The first two integrals are easily evaluated. Take, for instance, the second 

integral. For every position of 3, the integrand K(%)-D,) is the integral 

of A over the outward normals to &, at points of 3): D,. This domain of 

integration can be decomposed in a different way by first fixing a common 

point of D, and Xo, rotating D, about this point, and then letting this point 

vary over D, and Xp respectively. The result of this iterated integration is 

(46) (30° Di) 31 = In Ko V1 = 

Similarly. using the fact that the kinematic density is invariant under the 

“inversion ” of a motion, we have 

(47) fE (81° Do) =InK, 

To evaluate the third integral in (45) we use the density formula (24), 

and the formulas (40)-(44) for the total curvature arising from %o- 3%). 

We get 

SK (30° = f (D/sin* $)doV3, f (D/sin"* 
= (1/Jn-2) f (sin ¢)Ddodg LoL; 

f Holiol: + + bo f 

= On-2My 2M, + + aM OM, 

where the a’s and b’s are numerical constants. These constants can be 

determined if we take 3%, 3, to be two hyperspheres of radii 1 and h 

respectively. This completes the proof of the kinematic formula. 
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COMMUTATORS OF OPERATORS.* 

By Paut R. Hatmos. 

If H is a (complex) Hilbert space and if P and Q are operators on H 

(i.e. bounded linear transformations of H into itself), the commutator 

[P,Q] of P and Q is defined by 

[P,Q] —PQ—eP. 
The self-commutator [P] of a single operator P is defined by 

[P] — [P*, P] — P*P — PP*. 

My purpose in this note is to make a slight contribution to our as yet very 

meager knowledge of what the commutator of two operators on a Hilbert 

space can look like. Wintner [3] proved that if P and Q are Hermitian, 

then [P,Q] cannot be a non-zero multiple of the identity; as Putnam [1] 

has pointed out, Wintner’s method yields the same conclusion even without 

the assumption that P and Q are Hermitian. Wielandt [2] obtained (by 

entirely different methods) a somewhat more general result, applicable to 

normed algebras. Wintner then asked whether or not the negative assertion 

that [P,Q] can never be equal to the identity can be strengthened by proving 

that 

inf{|([P, Q]z,2)|: || =1} 

Putnam showed that this is always true on a finite dimensional Hilbert space 

and that it remains true in the infinite dimensional case if at least one of 

the two operators P and Q is Hermitian, or even normal, or even semi-normal. 

(An operator P is semi-normal if P*P and PP* are comparable with respect 

to the usual partial ordering of Hermitian operators.) I propose to show 

that, in general, the answer to Wintner’s question is no. This assertion 

follows easily from the fact (Theorem 2) that the real (i.e., Hermitian) 

part of a commutator on an infinite dimensional Hilbert space may be pre- 

scribed arbitrarily. Theorem 2, in turn, is a consequence of the assertion 

(Theorem 1) that every Hermitian operator on an infinite dimensional Hilbert 

space is the sum of two self-commutators. 

* Received May 25, 1951. 
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For a fixed Hilbert space H, let K be the set of all sequences x = {z,} 

such that z,¢ H, n=1,2,---, and such that > || 2, ||?<0. If, for any 

two elements z and y of K, the inner product of z and y is defined by 

y) (n, Yn)> 

then K is a Hilbert space; K is, in fact, the direct sum of countably many 

copies of H. Suppose that A is a Hermitian operator on H and define an 

operator B on K by (Br),n—Az,. Define another operator U on K by 

writing (Ur), =0 and (Ur),—a2, for n>1. 

Lemma 1. If P = BU, then ([P]z), = and ([P]z)n =0 for n > 1. 

Proof. It is easy to verify that the operator B is Hermitian and that 

the adjoint of U is defined by (U*r)n = Yn. It follows that 

(P*Px) = (U*B?U x)» = 2) = A? (U2) nsx = 

and, if n > 1, that 

(PP*x), = = A(UU*Bz) = A(U*Ba) = A(Ba)n = 

Since (PP*r), = A(UU*Br),—A(0) =0, the proof of the lemma is 

complete. 

It is convenient to say that a subspace H of a Hilbert space K is large 

if H contains infinitely many orthogonal copies of its orthogonal complement, 

or, in other words, if dim(H) =&,dim(K—#H). Thus, for example, a 

subspace of a separable Hilbert space is large if and only if it is infinite 

dimensional. 

Lemma 2. A Hermitian operator with a large null space is a self- 

commutator. 

Proof. Suppose first that the given Hermitian operator is positive, i.e. 

that it can be written in the form A? with a Hermitian A. Let H be the 

closure of the range of A. Since H is the orthogonal complement of the 

null space of A, there is no loss of generality in assuming that the originally 

given Hilbert space H contains the direct sum K of countably many copies 

of H, and that, moreover, H is embedded in K so that it coincides with the 

set of all those sequences x in K for which z,—0 whenever n>1. If an 

operator P is defined on K, as in Lemma 1, and extended to H by defining 

it to be 0 (or, for that matter, any normal operator) on the orthogonal 

complement H — K, then Lemma 1 implies the desired result. If the given 
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operator is negative, the representation can be achievd with P* in place of P. 

The case of a general Hermitian operator can be treated by putting together 

the results of the positive and the negative cases. It suffices to note that 

every Hermitian operator is the direct sum of a positive and a negative 

operator, and, in case the original operator has a large null space, then the 

direct summands can be selected so that they too have that property. 

LemMA 3. LHvery Hermitian operator on an infinite dimensional Hilbert 

space leaves invariant at least one large subspace with a large orthogonal 

complement. 

Proof. The underlying Hilbert space, if it is not already separable, can 

be expressed as a direct sum of separable, infinite dimensional subspaces 

invariant under the given operator. There is, therefore, no loss of generality 

in restricting attention to separable Hilbert spaces. If A is Hermitian and 

E is the spectral measure of A, and if, for every Borel subset M of the real 

line, H(M) =0 or 1, then A is a scalar multiple of 1. It follows easily 

that if, for every M, the dimension of the range of (MM) is finite or co-finite, 

then A differs from a scalar multiple of 1 by a finite dimensional operator. 

In the contrary case both H(M) and 1— #(M) have infinite dimensional 

ranges for some M. In either case the conclusion of the lemma is obvious. 

THEOREM 1. Every Hermitian operator on an infinite dimensional 

Hilbert space is the sum of two self-commutators. 

Proof. By Lemma 3, the given operator is the sum of two Hermitian 

operators with large null spaces, and the theorem follows from Lemma 2. 

To apply these results to a general operator P, it is necessary to break 

up P into its real and imaginary parts, i. e. the uniquely determined Hermitian 

operators A and B for which P= A+ iB. If P=A-+iB,Q=C + 1D (with 

A, B, C, and D Hermitian), it is convenient to write P’ = P’(P, Q) = A +-1D, 

Y=Q'(P,Q@)=B+iC. It follows that P’=P'(P’,Q’) =A+, 

Q” = Q’(P’,Q’) =D+iB, and finally that —P’(P’,Q’) =P, 

0” = Q’(P”, Q”) =Q. The reason for introducing P’ and Q”’ is notational 

convenience; in terms of them it is easy to write down the commutator of 

Pand Q. It is, in fact, a matter of automatic computation to verify that 

[P,Q] = 27 + + (2) + 

Since a self-commutator is always Hermitian, and since an operator uniquely 

determines its real and imaginary parts, it follows that, for instance, the real 

part of [P,Q] is 27*([P’] + [Q’]). Since the transformation carrying P 
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and Q into P’ and Q’ is cyclic of order 3, it follows that any one of the three 

pairs {P,Q}, {P’, Q’}, and {P”, Q”} uniquely determines both others. These 

facts, combined with Theorem 1, yield the following result. 

THEOREM 2. Every Hermitian operator on an infinite dimensional 

Hilbert space is the real part of a commutator. 

Corottary. There exist operators P and Q such that 

inf{|([P, Q]z,z)|: || =1} 21. 

Proof. Theorem 2 yields the existence of two operators P and Q such 

that the real part of [P,Q] is the identity. It follows that ([P, Q]z,z) 

where || z || 1, is a complex number whose real part is 1, and that, con- 

sequently, |([P, Q]z,x)| =1. 

It might be worth while, in closing, to call attention to another consequence 

of Theorem 1. Since a scalar multiple of a commutator is again a commutator, 

Theorem 1 and the decomposition of an operator into its real and imaginary 

parts imply that every operator on an infinite dimensional Hilbert space is 

the sum of four commutators. It follows that every additive functional of 

such operators, that vanishes on all commutators, vanishes identically, or, in 

other words, that the concept of trace cannot be extended to operators on 

infinite dimensional Hilbert spaces. (This comment was called to my atten- 

tion by Irving Kaplansky.) Results of this type were known before, but only 

under additional assumptions of continuity or positiveness. 
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ON HOMOTOPY GROUPS OF FUNCTION SPACES.* 

By JaMzEs R. JACKSON. 

1. Introduction. Let 2, be a point of subset X, of topological space X, 

and let Y, be a subset of space Y. Let yoe Yo, and denote by the same 

symbol yo any constantly y-valued function. Throughout this paper, the 

following notations will be used: 

Q is the space of continuous mappings f:(X, Xo) > (Y, Yo); that is, 

of mappings on X into Y which carry X, into Yo. 

Q, is the space of continuous mappings f:(X, Xo) > (Y, yo). 

Qo is the space of continuous mappings f:(X, Xo, 2%) > (Y, Yo, yo). 

v is the space of continuous mappings f: X)—> Yo. 

WV, is the space of continuous mappings f: (Xo, Zo) > (Yo, Yo)- 

We shall show (Section 10) that if X, is a retract of X, and if XY, Xo, 

and Y satisfy certain rather general conditions (Sections 3, 4, and 5); then 

the m-th homotopy group I,(Q, 4) is isomorphic to a split extension of 

Tm(Qo, Yo) by TIm(¥, yo) ; and also that Im(Qoo, Yo) is isomorphic to a split 

extension of Yo) by Yo)- 

(Group G is a split extension of normal subgroup N by group H if there 

exists a homomorphism of @ onto H, with kernel N, and which induces an 

isomorphism of a subgroup H, of G onto H. It is well-known that if H, is 

also a normal subgroup, then G is the direct sum of Hy and N.) 

These results, together with some corollaries, enable us to relate the 

homotopy groups of many function-spaces to the homotopy groups of Y, and 

also to investigate certain homotopy classification problems. In particular, 

we provide a systematic approach to the structure of Fox’s torus homotopy 

groups (Section 12), and list some miscellaneous interesting results (Section 

13). 

We also show (Section 8) that if Y, is a deformation retract of X, 

and if X, X, and Y satisfy a weak restriction; then Im(Q, yo) is isomorphic 

to Tm (¥, yo). 

2. Some definitions. The subset {7|0S2;51,i1—1,---,m} of 

* Received June 6, 1951. 
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Euclidean m-space will be denoted by 7". For J’ we simply write J. The 

subset of point of J” having at least one coordinate either zero or one will 

be designated by 

Our definitions of homotopy, relative homotopy, homotopy groups, induced 

homomorphisms on homotopy groups, and other such concepts will be those of 

Fox [2] and Hu [4]. Our notation is essentially that of Hu. 

Whenever a space of mappings is considered as a topological space, its 

topology will be the compact-open topology of Arens [1] and Fox [3]. 

3. Condition I. The condition discussed in the present section will be 

hypothesized in the main lemmas and theorems to follow. That it is not 

very restrictive is indicated by (3. 4). 

(3.1) Definition. We say that X and Y satisfy Condition I provided 

that whenever o:]"™—» Y~* is a continuous mapping, we may define a con- 

tinuous mapping X by 

o*(t, 2) =o(t) (2) (3. 2) el" X Z. 

Fox [3] has shown that for arbitrary X and Y, if o*: I" K X — Y is con- 

tinuous, then (3.2) defines a continuous mapping o:/™— Y*. Thus, if 

X and Y satisfy Condition I, then (3. 2) determines a one-one correspondence 

between the space of continuous functions on J” into Y* and the space of 

continuous functions on /™ & X into Y. Simple calculations show that this 

correspondence may be restricted to give a one-one correspondence between 

the continuous mappings o:(J™, B™-*) — (Q, and the continuous mappings 

o* K X,1I™ K Xo, B™ K X) > (Y, Yo, yo). 

One also concludes easily from Condition I that homotopies of the functions 

o relative to {B™",y)} are equivalent to homotopies of the corresponding 

functions o* relative to {I™ K Xo, Yo; B™ X X, yo}. 

These considerations, with parallel ones concerning Qo, yield the following 

lemma, which has been informally stated and used by Hu[7] in a more 

restricted case. 

(3.3) Lemma. If X and Y satisfy Condition I, then the groups 

TIm(Q, Yo) and Tm(Qo, Yo), respectively, may be considered to have as elements 

the homotopy classes relatwe to {I™ K Xo, ¥o;B™ XK X, yo} of the con- 

tinuous mappings 

o*: X, Xo; x XxX) Yo, Yo)> 

4 
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and the homotopy classes relative to {I™ K Xo,4o;B™ KX, yo} of the 

continuous mappings 

x A, x x xX) (Y, Yo; Yo). 

One sees easily that if #, and a, are each members of either of the groups 

mentioned in the lemma, and if they are represented by o*, and o*, according 

to the lemma, then the sum a, + a, is represented by o*; =o*,;(t, 2), defined 

by o*,(2t, tm, 2) if OS 4, and by o*2(2t, —1, tm, 

if4S%4,51. 

The generality of Conditions I is indicated by the following theorem, 

a direct consequence of a theorem of Fox [3]. 

3.4) THEorEM. X and Y satisfy Condition I if either (i) X satisfies 

the first axiom of countability, or (ii) X is locally compact and regular (No 

restriction on Y in either case). 

4. Condition II. This is another hypothesis of our principal theorems. 

Its generality is indicated by (4. 2). 

Closed subset X, of space X is said to have the homotopy extension 

property in X relative to space Y if whenever continuous mappings ¢: X > Y 

and ¢’:I X X,— satisfy ¢’(0,2) = for re X_; then ¢’ has a con- 

tinuous extension ¢”:I X—Y such that $”(0,7) =¢(z) for re X. 

(4.1) Definition. We say that X, Xo, and Y satisfy Condition II 

provided that for m=—1,2,---, the subset (I™ x X,)U(B™' XX) of 

I™ X X has the homotopy extension property in J” X X relative to Y. 

The significance of this condition will appear in the proofs. The weakness 

of the restriction is indicated by the following theorem, which is a combination 

of [4, 9. 2-9.5] with some standard theorems (For definitions of ANR and 

ANR*, see [4]). 

(4.2) THEorEM. X, Xo, and Y satisfy Condition II tf Xo 1s closed 

in X, and if also any one of the four following requirements is met: 

(i) X and X, ANR’s. 

(ii) X metric, Y an ANR. 

(iii) X a Hausdorff space, I™ XK X normal for m=1,2,---,Y an 

ANR*. 

(iv) I™ x X normal for m—1,2,---,¥Y a compact ANR*. 

k 
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5. Conditions I and II. If X and Y, and also X, and Y satisfy Con- 

dition I, we say X, Xo, and Y satisfy Condition I. If also X, Xo. and Y 

satisfy Condition II, then we say that X, Xo, and Y satisfy Conditions J 

and II. 

We shall mainly be interested in the case that X, is a retract of X 

(observe that this is always the case when X, reduces to a single point). 

To clear the air in this case, we set down a corollary which follows from (3. 4), 

(4.2), and some standard theorems. 

(5.1) THeoremM. Let X, be a retract of X. Then X, Xo, and Y 

satisfy Conditions I and II tf either (i) X is an ANR, or (ii) X ts metric 

and Y is an ANR. 

These conditions are of special interest since every locally-finite poly- 

hedron is an ANR [8]. 

6. Some homomorphisms. Define by 0(¢) =¢4|Xo, 

Define j7:Q,— by j(¢) =¢, $€ 2). The functions 6 and 7 are obviously 

continuous. 

(6.1) Lemma. If X, Xo, and Y satisfy Conditions I and II, then the 

induced homomorphism j*: Um(Qo; Yo) Tm(Q, Yo) carries TIm(Q, Yo) onto 

the kernel of the induced homomorphism 6* : Wm(Q, yo) > Um(¥, Yo). 

Proof of (6.1). It is obvious that the image of 7* is contained in the 

kernel of 6*. Hence we must show that if «¢ Im(Q, yo), and if 6*(a«) —0, 

then for some B € IIm(Q, Yo), we have «—7*(B). Lemma (3.3) reduces 

this to the following proposition. 

(6.2) Leto:(I™ K X,I™ XK Xo, X)—(Y, Yo, yo) be continuous, 

and suppose there exists a mapping o’: J I™ Y, such that o’ (0, t, z) 

amo(t,z), (t,2)eI™ XK Xo; o (I K K Xo) — YH —o' (1 K I™ XK X)). 

Then there exists a mapping 0”: IX I™& X->Y such that 

o”(0,t, 7) = o(t, 2), (t,7)eI™ XX; 

(I K X) =o" (1 K K Xo). 

For suppose (6.2) is true. If « represents an element « of the kernel 

of 6*, then the hypotheses of (6.2) are fulfilled, whence o” exists. Define 

o:1™X by oi (t, =o" (1, t, 2), (t,2) I™ K X. Clearly o, repre- 

sents Since o,(1™ Xo) the function o, also represents some 

element Be IIm(Q%, Yo). One sees easily from the definition of j* that 

j*(B) =a, as required. 
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Proof of (6.2). Extend o’ to I X[(J™ X X,))U(B™" X X)] by setting 

o (I X B™* X X) =yo. Obviously the extended o’ is continuous and satisfies 

(0, 7) =o(t, 2), (t,2) (I™ K X,)U(B™" XK X). 

Hence by Condition II, o’ has an extension 0”: K I™& X— Y such that 

o” (0, t,2) =o(t, x), X. The function o” obviously satisfies 

the requirements of the conclusion of (6.2). 

7. An important lemma. In this section we do not need Condition I 

or Condition II, but we shall require the more restrictive hypothesis that X, 

be a retract of XY. Lemma (7. 1)—in a restricted form suggested by the fact 

that Y may be considered as a retract of Y*—was the starting point of the 

present investigation. 

Let po: X X, be a retraction of X onto Define p: by 

p(>) = One sees easily that p is continuous. Let p*: IIm(¥, yo) 

— (Q, yo) be the homomorphism induced by p. 

(7.1) LemMa. 

(i) 0*p*: Yo) > In(¥, Yo) ts the identity automorphism. 

(i1) p*: Im (¥, Yo) Tm(Q, Yo) 1s an isomorphism into. 

(iii) 6* : Thm (Q, Yo) > TIm(¥, Yo) 1s an onto homomorphism. 

Proof of (7.1). Conclusion (i) is the fruit of a simple calculation ; 

(ii) and (iii) are elementary set-theoretical consequences of (i). 

8. An isomorphism theorem. The following result, which is not needed 

for the ensuing theory, has obvious generalizations relating to the concept of 

homotopy type. 

(8.1) THeorem. If X, Xo, and Y satisfy Condition I, and tf Xo ts a 

deformation retract of X ; then 6* : Tm(Q, Yo) IIm(¥, Yo) 1s an isomorphism 

onto. 

Proof of (8.1). By (%.1) (iii), we need only show that 6* has kernel 0. 

Let 7: I X > X retract X onto by deformation. Lemma (3.3) reduces 

(8.1) to the following proposition. 

(8.2) Leto:(1™ X,I™ XK Xo, K X) (Y, Yo, yo), and suppose 

there exists a mapping o’: I I™ Xo — Y> such that 

o (I X Be X,) X). 

| 
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Then there exists a mapping 0”: I &K I™ K X — Y such that 

o”(0,t, 2) =o(t,z), (t,7)eI™ XX; ine CALS 

Be XK X) (1K XX). 

Proof of (8.2). Define (s, t, 7) to be o(t, r(2s,7)) if and 

o (2s —1,t,r(1,7)) if }=s=1. It is easily verified that o” satisfies the 

requirements of the conclusion of (8. 2). 

We set down ahead of time a simple corollary of (8.1) and (9.1). 

(8.3) Corotuary. Let X, Xo, and Y satisfy Conditions I and II, and 

suppose X, is a deformation retract of X. Then UWm(Qo, yo) ts trivial (that is, 

consists of a single element). 

9. The main lemma. The following result sharpens (6.1) for the case 

that X, is a retract of X. 

(9.1) Lemma. If X, Xo, and Y satisfy Conditions I and II, and ‘f 

X, ts a retract of X; then the homomorphism j* carries Tm(Qo, Yo) tsomor- 

phically onto the kernel of 0*. 

Proof of (9.1). By (6.1), we need only show that j* has kernel 0. 

Let p: X — X, be a retraction of X onto Xo. By means of (3.3), we reduce 

(9.1) to the following proposition. 

(9.2) Let o:(1™ X,I™ XK Xo, K X) > Yo, yo) be contin- 

uous, and suppose there exists a mapping o’: I XK I™ K X > ¥ such that 

o(0,t,z) =o(t,z), (t,2)eI™ XX; I* 

o (I X KX) — KX ™ X X) 

Then there exists a mapping o”: I & I™ X X + Y satisfying the same require- 

ments, and also o”(I K I™ K Xo) = Yo. 

Proof of (9.2). Define 

r(1r, 8, t, ©) == Yo, reLOSeSr, tel", ce 

r(r, 8, t, 2) =o'(s—r,t, xz), rel,rSsSi,tel”, ceXo; 

XIX B™ XZ) 

r(r, 0, =o’ (0, t, z), reLtel™,zed ; 

=o’ (1—1, t, p(z)), rel,tel™,reX. 

It is easily seen that 7 is single-valued and continuous, and is defined 
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on I X X X X)]. Hence by Condition TI, it has an extension 

I™ x XY. Define o'(s, t, rz) =7(1,8, t, x), 

(s,t,c)eI XX. One sees without difficulty that o” satisfies the 

requirements of the conclusion of (9. 2). 

10. The main theorems. The first theorem of this section is merely a 

combination of (7.1) and (9.1). The second theorem is a purely algebraic 

consequence of the first. 

(10.1) THrorem. Let X, Xo, and Y satisfy Conditions I and II, and 

let X, be a retract of X. Then Um(Q, yo) is isomorphic ta a split extension 

of (Qo, Yo) by In (¥, Yo). 

(10.2) THerorem. Let X, Xo, and Y satisfy Conditions I and II, and 

let X, be a retract of X. Then: 

(i) Tmn(2, yo) has a subgroup isomorphic to Tm(W¥, yo), and a normal sub- 

group tsomorphic to Tm(Qo, Yo)- 

(ii) If either of Um (¥, Yo) and Im(Qo, yo) consists of a single element, 

then IIm(Q, Yo) 1s isomorphic to the other. 

(iii) Jf Im(Q, yo) ts abelian, then it is isomorphic to the direct sum 

Tn (¥, Yo) Tm (Qo, Yo). 

Note that the hypothesis of (10. 2) (iii) is always fulfilled for m = 2, and 

is fulfilled for all m= 1 if Y is a topological group and Y, a subgroup [6]. 

Following through the proofs on which (10.1) is based, one sees easily 

that the following theorem can be established in exactly the same way. 

(10.3) THeorem. Let X, Xo, and Y satisfy Conditions I and II, and 

let X, be a retract of X. Then Tm(Qoo, Yo) is isomorphic to a@ split extension 

Of Tm(Qo, Yo) bY Tm (Yo; Yo)- 

Theorem (10.3) has, of course, a corollary parallel to (10. 2). 

We now provide a theorem concerning the reiative homotopy groups 

Tm (Q, Xo, Yo) and Xo, Yo), Where Q, is considered as a subset of 2 

and of Qo in the obvious way. The proof, which follows easily from (7.1) 

(iii), (9.1), and the exactness of the homotopy sequence, is omitted. For 

relevant definitions and theorems, see [2] or [4, pp. 80-82, 94-99]. 

(10.4) THrorEM. Let X, Xo, and Y satisfy Conditions I and II, 

and let X, be a retract of X. Then for m=2,3,- - -,Wm(2,Q%, yo) is 

isomorphic to Tm(¥, Yo), and (Qo0, Xo, Yo) 18 womorphic to yo). 
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Those familiar with relative homotopy theory and the homotopy sequence 

might suspect that (10.1) and (10.3) might be more easily established by 

first proving (10.4) directly. However, this does not seem to be the case, 

since existing theorems do not apply conveniently to the lemmas which arise 

in setting up a direct proof of (10.4). 

11. Factor spaces. The theorems of Section 10 do not lend themselves 

to calculations of any generality because of the appearance of the group 

TIm(Qo, Yo), Which is difficult to deal with directly. We get around this by 

introducing the factor space X* — X/X,, which is the space obtained from 

X by identifying the points of X, to the single point z*. The map of identi- 

fication X X* is defined by m)(x) == xe X — Xo, and m(X_) — 2*. 

The set X* is topologized by taking subset U open if and only if m)(U) 

is an open subset of XY [9]. 

Let be the space of continuous functions f:(X*,2*) > (Y, yo). It 

is not difficult to see that if X, is compact, then a homeomorphism m: 2*, > Q) 

is defined by setting m(¢) = Then the following theorem is 

obvious. 

(11.1) THeorem. Let be compact. Then Wm(Qo, yo) is isomorphic 

to TIm(2*o, Yo). 

We shall not enumerate the obvious corollaries to the theorems of 

Section 10. 

12. An application. In this section we shall apply (10.1) and (11.1) 

to obtain the results of Fox [2] concerning the algebraic structure of his 

torus homotopy groups. 

(12.1) Derrition. Let T° be a point, and for r—1, 2,- - -, let T" be 

the r-fold topological product of 1-spheres. Define t,"(Y, yo) = Um(Y7"”, yo), 

Fox pointed out that 7,7(Y, yo) is identical with his r-th torus homotopy 

group of Y at base-point yp. 

Consider 77-1 to be parametrized by r—1 real numbers modulo 1. 

Define p: > Tt, (r= 2), by p(x) = (0, 22,° 2-1), ve Plainly 

p is a retraction of 7** onto a (compact) subset homeomorphic to 7’~*. 

Hence by (10.1) and (11.1), we conclude that 7,"(Y, yo) is isomorphic to 

a split extension of IIn(Q*o,y.) by 7%1(Y, 40), where we see without 

difficulty that IL,(Q*o, yo) is isomorphic to IIn.i(Y7"*, yo). This proves the 

following proposition. 
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(12.2) Yo) tsomorphic to a split extension of (Y, yo) by 

tra(Y, Yo), for r=2. 

Now 7™*' (Y, yo) is commutative, so we can apply (12.2) to it to obtain 

a direct sum decomposition. Remembering that T° is a single point, so that 

7"(Y, 40) is isomorphic to Im(Y, Yo), we obtain the following direct sum 

decomposition by a simple induction. 

(12. 3) Yo) = (F-2) yo). 

Fox’s structure theorem is obtained by combining (12.2) and (12.3) 

for the case m = 1. 

13. Further applications. Many of the known results on homotopy 

groups of spaces of inessential functions are easy corollaries to the theorems 

of Sections 10 and 11, which also open to investigation the homotopy theories 

of many functions spaces inaccessible to existing results. 

In view of (3.3), it is clear that any theorem on homotopy groups of 

function spaces can be interpreted as a homotopy classification theorem of a 

special type. 

We give some simple applications of our theorems. The first two are 

slight generalizations of known results [5], but are included for completeness, 

since they are needed for the other applications. 

Let S* be the k-sphere (k = 0: S° is a pair of points), and let s; be a 

fixed point of S*. 

(13. 1) Tm Yo}; Yo) ~ Yo): 

(13.2) Yo}, yo) 1s isomorphic to a split extension of (Y, yo) 

by IIm(Yo, Yo)- 

Proof of (13.1). By (11.1), we have, for k > 0, 

Tm (YS"{sz, Yo}, Yo) = In Yohs Yo)- 

That 

is an immediate consequence of (3.3). The case k = 0 is trivial. 

Proof of (13.2). Take X = S* and X,—s,; in (10.1). (13.2) follows 

= 
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at once from (13.1) and the obvious fact that Y,** is essentially identical 

with Y>. 

The following result has numerous obvious generalizations, whose proofs 

are similar to that below. 

(13.3) Let X be the union of S** and Si, joined together by tden- 

tifying the points s;_, and s;-, to a single point a. Then 

TI, (Y*{2o, Yo}. Yo) Yo) + yo). 

Proof of (13.3). Applying (10.3) with XY, = S*1, (11.1), and (13.1), 

we see that II, (Y*{2o, yo}, yo) is isomorphic to a split extension of II;(Y, yo) 

by II;(Y,y.). Another application of the some theorems with X, = Si 

shows that the isomorphic image of Ij(Y, yo) in yo}, yo) is a 

normal subgroup, whence the proposition follows. 

We state one simple result concerning homotopy classification. Its proot 

follows from (13.2), when we observe that the function space with which it 

is concerned is homeomorphic to the space of representatives given by (3. 3) 

for II, (¥**{s;, Yo}, yo). 

(13.4) The homotopy classes relative to {s, X S81, Yo; S* XK 81, yo} of 

the space of continuous functions 

f:(S* X S81, & S*, 81) > (Y, Yo, yo) 

can be put in a 1-1 correspondence with some split extension of Txi(Y, yo) 

by yo), and hence with the direct sum Yo) + (Yo, yo). 

The preceding applications of this section are almost obvious intui- 

tively, although a rigorous proof is in each case except (13.1) rather difficult, 

without the theorems of Sections 10 and 11. The following proposition is 

less accessible to the imagination. 

(13.5) Let Xp be the closed orientable surface of genus p. Then 

Tm (Y**, yo) = Go has a normal series of subgroups GoDG,D- + + D Gaps, 

where: 

(i) Go 1s isomorphic to a split extension of Gy by TIm(Y, yo) ; 

(ii) G; is isomorphic to a split extension of Gisy by Tmsi(Y, yo), for 

(ili) Gopst TIms2(Y, Yo): 
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Proof of (13.5). The case pO is contained in (13.2). If p>0O, 

consider X, as a sphere with p handles. Single out a handle H, and para- 

metrize it in the obvious way by longitude 6 (— 2/2 <0 = 7/2) and latitude 

¢ (—_7<¢X7). Designate the point whose coordinates are 6 and ¢ 

by (9, 
In (10.1), take X, the single point (0,0)eH. We find that G, is 

‘somorphic to a split extension of 

(13. 6) Tn (¥*{ (0, 0), Yo}; Yo) = 

by a group essentially identical with IIm(Y, yo). 

We may construct X, in such a way that (—7/2,0) can be joined in 

X, to (7/2,0) by an are of a great circle in the surface of the sphere. 

Let Xo be the union of this are with the points of H for which ¢—0. 

Then (0,0) eX,CXp, and examination of the figure makes it clear that X, 

is a 1-sphere and is a retract of Xp. Then by (10.3) and (13.1), G’; is 

isomorphic to a split extension of IIn(Y¥**{Xo, yo}, yo) = G’2 by Umu(Y, yo). 

Let X*, be the space obtained from X, by identifying the points of X, 

to the single point z*. By (11.1), G’s is isomorphic to In,(Y***{x*, yo}, yo). 

Let X*, be the image in X*, under the map of identification of the set of 

points in H such that 60. One sees easily from a sketch that X*, is a 

1-sphere and is a retract of X*,. By (10.3) and (13.1), G’, is isomorphic to 

a split extension of IIn(Y**?{X*o, yo}, Yo) = G’s by Imu(Y, yo). Using (11. 1) 

we see easily that if xe X,_,, then G’; is isomorphic to IL,(Y*?{z, yo}, yo). 

Thus. in essence, we are back to (13.6), except that p is reduced by 

unity. The proof is completed by a simple induction, concluding in an 

appeal to the case p = 0, and followed by the identification of the groups G’, 

with subgroups of Gp. 

We note in closing that the theorems of Section 10, by reducing problems 

concerning spaces like © and Qo. to problems concerning ¥, Wo, and Qo, 

greatly extend the range of application of the theorems recently obtained by 

Hu [7%], relating homotopy groups of certain function spaces to certain 

subgroups of cohomology groups. Our principal theorems are, incidentally, 

generalizations of certain theorems of [7], but were deduced without knowl- 

edge of that paper. 

UNIVERSITY OF CALIFORNIA, 

Los ANGELES. 
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A REMARK ON ISOLATED CRITICAL POINTS.* 

By Ericu H. 

1. Introduction. Let J —J(zx) be a real valued function of the point z 

of a space EF to be specified later. We assume that the zero point o of Z is an 

isolated critical point, i. e., that 

(1.1) grad I(r) =o for 

while grad J £0 for all x ~o0 of some neighborhood of 0. In many investi- 

gations about critical points the following property which we formulate as a 

“hypothesis ” plays a decisive role: 

Hypothesis H. There exists a neighborhood U of o such that for all 

of the intersection’ U {I(x) =I(o0))} the vectors —o and grad 

I(x) are linearly independent. 

If # is the (real) Euclidean n-space #”, H is known to be true under 

either of the following two conditions: (i) 0 is a non-degenerate critical 

point *; (ii) 7(x) is analytic in the neighborhood of 0.’ 

In a recent paper * hypothesis H serves as the main assumption of the 

theorem that for H = E" the alternating sum of the type numbers of the 

critical point equals the index of the singularity o of the vector field grad I(x), 

and without proof it has been stated in this paper that the following condition 

is sufficient for the validity of the hypothesis H: there is an integer p= 2 

such that J has continuous differentials up to and including order p + 2; ail 

differentials of order less than p vanish at z = 0, while the homogeneous form 

of degree p giving the p-th differential at co is not degenerate in the 

algebraic sense. This condition will be called “ non-degeneracy of order p”® 

since for p= 2 it coincides essentially with the customary non-degeneracy 

condition. 

* Received May 16, 1950. 
+The symbol / denotes intersection, and for any property P, the symbol {P(@)} 

denotes the set of all # having the property P. 

* [6], p. 155, Theorem 4. 2. 

[1], Lemma 10; [6], p. 156, Theorem 4. 3. 

* 

® Definition 2. 6. 
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The object of the present paper is then to prove the theorem that non- 

degeneracy of order p is sufficient for the validity of the hypothesis H 

(Theorem 3.1). The proof will be given for the case that H is a (not 

necessarily separable) Hilbert space which of course includes the case of a 

Euclidean n-space. The proof is given in Section 3 while Section 2 contains 

preliminary definitions and facts about differentials and gradients in a Hilbert 

space not all of which are new. 

2. On differentials and gradients in the Hilbert space E. Let E bea 

Hilbert space, i.e., a real Banach space in which for any couple z,y of 

elements, a scalar product (x,y) is defined which satisfies the usual rules 

and is such that (z,2z)4 is the norm || x || of the element z of £. 

Definition 2.1. Let f(x) be a continuous map of some open convex 

subset C of EF into a Hilbert space H,.° We define inductively differentials 

d°, d', d*,- - - of f as follows: d°f(z) =f(x) for xe C. Suppose now that 

for some integer 1 = 1,d** di"f (xz, hy, ho, - >, his) has been defined for 

all i-tuples (x, hi, - his) of elements of F such that x + hi +he+::: 

+hiieC. The i-th differential d‘ is then defined if and only if there 

exists a map --,his,hi) mapping all those (1 -+ 1)-tuples 

(2, hi, he,- >, his, hi) of elements of # such that 7+h,+---+hi. 

+h,eC into F, which has the following properties: d‘ is linear? in h; and 

(2. 1) (x hii)— (2, hit) 

= dif (x, hi,- +, his, hi) + hin, hi) 

with 

(2. 2) lim e(2, +, his, hi)/|| hi || where || A; || 0. 

If a d‘f(xz,hi,- - +, his, hi) with these properties exists it is uniquely deter- 

mined * and is called the i-th differential d‘ of f in C. dtf(z,hi,- + -,hi) is 

i-linear in h,,- - -,A;. In addition we have the important 

LemMA 2.1. If dif(z, hi, ho,---, hg) 1s continuous in the argument zx for 

all x of a neighborhood of the point x, then it is symmetric in hy, ho,- +, hi 

at t= Zp. 

*In this paper f(a) will be either a real valued function (i.e., HZ, the real line) 

or a map of C into ZH, = E£. 

7 Tinear ” means additive and continuous. 

§ [3], Lemma 11.1. 
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For the proof see [2], Theorem 8 or [4], Satz 1. 

Definition 2.2. Tf Q(hi,he,- is an t-linear symmetric real 

function we set O(h) = Q(hi, +, hi) mene... and call Q(h) a form of 

degree i. Correspondingly, if f(z) is real-valued (i.e., #, the real axis) and 

d'f(x,hi,- +, hi) exists in C we define d‘f(z,h) for «+ theC, by setting 

If f has continuous differentials up to and including order (n+ 1) in 

C then the Taylor formula 

(2.8) h) —f(@) = + Bea 

(2. 4) 
(0 + th, h) dt 

holds if « and «+ A are in C.® 

So far we have used only the Banach space property of H. We now 

make use of the basic property of a Hilbert space H# that to every linear 

functional /(z) there exists a uniquely determined element ge such that 

I(x) = (g,x) where (g,x) denotes the scalar product of the elements g 

and x. This property together with the linearity of d‘f in h; makes the 

following definition possible: 

Definition 2.3. If the real-valued f(z) has an 1-th differential 

d‘f(v,hi,: - hi) then the gradient gt = g‘(z,hi,- is defined 

as the element of # which is uniquely determined by the equation 

(2.5) hea, hs) hea), hs) = (94, ha). 
The 1-linearity of d‘f implies obviously the (t — 1)-linearity of g(a, 

in hi,- -,hi+. In particular, the first gradient function is called 

the gradient of f(z) and we write 

(2. 6) g(x) = = grad f(x) 

(2. 7) g* hes) = g*(a,h) if mh. 

LemMa 2.2. If d'f(z,h) exists and is continuous in x at =o, then 

there exists a neighborhood U of x» and a constant C=C (ax) such that for 

all xe U 

® [2], Theorem 5. The integrals are “Riemann” integrals in the sense defined in 

[2], p. 166. 
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Proof. The first inequality follows from [4], Hilfssatz 2. The second 

inequality follows from the first by setting hij = g*(z, his) in (2.5). 

Lemma 2.3. (a) The i-th gradient -, his) (Definition 2. 3) 
is symmetric in his tf g* is continuous in x. (b) d**g(z, h) = gi(a, h). 

Proof. Since every permutation of hi,- - +,hy, may be considered as 

a permutation of hi,- his, hi (leaving hy fixed), Lemma 2.3(a) is an 

immediate consequence of (2.5) and Lemma 2.1. 

To prove (b) we note that, because of the symmetry in hy,- - -, hin, 

d'f(a, his, hi) = (g*(a, bi), hia), 
d**f (x, hi,* hes) (g*" (a, Rea), tees). 

Because of d‘ = dd‘ it follows easily from the second equation that 

d*f (2, Res, hy) = (dg** (a, +, hi), Res) 

and comparison with the first equation proves 

g*(2, +, hes, hy) dg** (a, >, hee, hy). 

Recursive application of this formula yields (b). 

Definition 2.4. If P(hi,- + -,hi+s) is an element of # which is sym- 

metric and linear in the h;, we set P(h) =P(hi,- and 

call P(h) a polynomial of degree 1—1 in h.*° 

For later reference we write the Taylor formula (2.3), (2.4) in terms 

of gradients (Definition 2. 3) 

(2.8) > (g4(a, h), h)/j! + hb); 

(2. 9) h) f “(1 — t)"/n + th, h), h)dt. 

It is easily seen that a form Q(h) of degree i (Definition 2.2) has a 

gradient. We define: 

10 [5], p. 63. The original definition goes back to Banach. 
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Definition 2.5. The form Q(h) is non-degenerate if grad Q(h) o for 

ho. If there exists a constant m > 0 such that 

(2. 10) | grad Q(h) | =m for || | =1, 
Q(h) is called strictly non-degenerate. 

Remark to Definition 2.5. If EH is the Euclidean n-space E” the above 

definition of non-degeneracy coincides with the usual one: let h1,h?,- - -,h” 

be the components of h in some coordinate system; then Q(h) is degenerate 

if and only if the equations 0Q¢/dh,=0 (1—1,2,---,n) have h'=h? 

=-:+-+=h"=(0 as the only common solution. In this case a non-degenerate 

form is obviously also strictly non-degenerate. 

The following Lemmas 2.4 and 2.5 state some simple properties of 

differentials and gradients. We omit tueir simple proofs (cf. [3], p. 138). 

LemMaA 2.4. Let f(hi,ho,--+,hi) be a function of the 1 elements 

of H. We assume that for the differentials 

djf(hi, -,hi) of f with respect to h; exist and are continuous im 

*,hi). Moreover, let gj(Mi,- - -,hi) denote 

the gradient of f(hi,- + -,hi) considered as a function of hj, such that for 

the increment x 

dif (hi, ho, hi, ”) ho, hi), 7): 

Finally, let P(h) Then 
4 

(2. 11) dk (h, dif (hi, hj, hy=he=... =hi=h 
j=1 

and 

(2. 12) grad F(h) = grad; f(hi, hi) 
j=1 

Lemma 2.5. If, in addition to the assumption of Lemma 2.4, 

f(hi, -,hi) ts symmetric in its arguments, then 

dif(h,h,- -,h,n) =: =adf(h,h,: --,h,n), 

grad, f(h,h,: - -,h) =grad.f(h,h,---,h) -=gradf(h,h,- -,h), 

and consequently (see (2.11), (2.12)): 

(2.13) dF (h,y) grad F(h) grad; f(h,h,- - -,h). 

Lemma 2.6. Let f(x) possess an 1-th differential (x, hi, ho,- hi) 

and let g*(x, hi, hs, *,his) be the i-th gradient of f(x) (Definition 2. 3). 

iW 
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Then 

(2. 14) grad, d‘f (x, - =19'(2,h,- 

where grad, means the gradient operation with respect to the variable h. 

Proof. *, his, hi) is linear in hy and therefore equal to its 

own differential with respect to h; and with the increment h; Consequently 

by the definition of grad; as the gradient with respect to hy we have 

d*f (a, +, his, hi) did*f (x, +, hin, i) 

== (grad; (x, hi,- hin, hi), hi). 

Comparison with (2.5) shows that 

+, hia) = grad; d*f(x, hi,- Ria, hi). 

We now set hi = hy =/h and apply (2.13) with f(hi,: -, hi) 

replaced by d‘f(z,hi,- - and obtain immediately (2. 14). 

Without proof we state the “ Leibnitz rule.” 

Lemma 2.7%. If the maps y(x), 8(x) of Ce into EF possess j-th 

differentials then the scalat product f(x) = (y(x),8(x)) has a j-th differ- 

ential and 

(a,b) (2) (ay (a, b)). 
Definition 2.6. Let I I(x) be a real-valued function defined in some 

neighborhood U of «=o and p an integer = 2. Then J(z) is called non- 

degenerate of order p at o if the differentials of J up to and including order 

p+ 2 exist and are continuous in U, if the differentials of order 1, 2,-- -, 

p—1 are 0 at xo, and if the form d?I(o,h) in h of order p is non- 

degenerate in the sense of Definition 2.5. If, in addition, d*I (0, h) is strictly 

non-degenerate then J is called strictly non-degenerate of order p. 

Lemma 2.8. Let I(x) possess continuous differentials in some neighbor- 

hood U of 0. Then I ts non-degenerate of order p at o if and only if 

(2. 16) (0, h) —g?(0,h) -—g?*(0,h) =o, 
(2. 17) g?(0,h) forho. 

Moreover if (2.17) ts replaced by 

(2. 18) ll 9?(0,4)|| =» for |h || 

for some positive » we obtain necessary and sufficient conditions for I to be 

strictly non-degenerate at o of order p. 
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Proof. Suppose (2.16) and (2.17) are satisfied. From (2.16) and 

the definition (2.5) of the gradient function it follows that 

(2. 19) @I(0,h) = d?I(0,h) =- -—=d?*I(0,h) =0. 

Moreover from (2.17) and Lemma 2.6 we see that grad, d?I(0,h) ~o for 

ho, i.e. (Definition 2.5), that the form d?I(0,h) is non-degenerate. Thus 

(2.16) and (2.17) imply that I is non-degenerate of order p. If (2.17) is 

replaced by (2.18) then Lemma 2. 6 shows that || grad, d?I (0, h)|| = pp and 

we see (Definitions 2.5 and 2.6) that J is strictly non-degenerate at + = 0. 

Conversely, suppose that J is non-degenerate of order p. Then the 

equations (2.19) hold identically in h, and therefore grad, d‘I(0,h) =o for 

i=1,2,- - -,p—1, which, by Lemma 2. 6, implies (2.16). Moreover under 

our present assumption d?I(0,h) is non-degenerate, i.e., grad, d?I(0,h) ~o 

for h=4o0 (Definition 2.5), which, again by Lemma 2.6, implies (2.17). 

In the same way this lemma shows that the strict non-degeneracy of d?I(o, h) 

implies the existence of a » >0 for which (2.18) is true. 

3. Proof of the hypothesis H in case of non-degeneracy of order p. 

THEOREM 3.1. Let I(x) be strictly non-degenerate of order p at the 

origin o of the Hilbert space E (Definition 2.6). 

We assume without loss of generality that 

(3. 1) I(o) =0. 

Then the hypothesis H (see introduction) is satisfied. 

Proof. We set 

(3.2) (x) grad{ (x, x)?/*}; (3.3) = pa(a, 

(3.3) being implied by (3. 2). 

If cho is an element of # such that h and g'(h) = grad I(h) 

are linearly dependent, then (3.3) shows that y(h) and g*(h) are also linearly 

dependent. Consequently in the Schwarz inequality 

l(v(2), 9 (2))| 

the equality sign will hold: 

(3. 4) l(v(h), = Il (A) 

In order to prove Theorem 3.1 we will show that (3.4) is impossible for 

small enough || h || ~0 if 

(3. 5) I(h) =0. 
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We will indeed establish the existence of positive constants C, C’ such that 

for small enough || || +40, while on the other hand for small enough 

|| h || 40 which in addition satisfy (3.5) 

(3. 7) (h))| SC" | h 

Obviously (3.6), (3.7) are (for small enough h +0) in contradiction with 

(3.4), and our theorem will be proved once the existence of constants C, C’ 

with the above properties has been demonstrated. 

We start with the proof for the existence of C. In order to estimate 

the left member of (3.6) we first investigate g'(h) —gradI(h). To this 

end we apply the Taylor formula in the form (2.8), (2.9) with n= p to 

f(x) =I(a) at c ~o and use the equation (2.16) of Lemma 2.7 and (3.1) 

to obtain 

(3. 8) I(h) = (9?(0,h)/p! + h), 

(3.9) (1—£)?/p! (go (th, h), 
To find g'(h) = gradI(h) we form the differential dI(h,«) of I(h) with 

the increment «. We have from (2.5) and (2.14)* 

dn[ (g?(0, h), h), = d,[d*I (0, h), €] 

= (grad, d?I(0,h),«) = p(g?(0, h), «), 

and therefore 

(3. 10) grad, (g?(0,h),h) = pg?(0,h). 

Moreover if for any function I(x, h) of x and h, d,[I(x, h), «] and d,[I(a, h), €] 

denote the differentials of I(z,h) corresponding to the increment ¢ with 

respect to x and h respectively we see that d,[(g?*'(th, h),h),«] is identical 

with 

(th, = td,[ (th, h), «| + d.[ (th, h), €] 

= tde*I (th, hi, €) =hpach 

+ (grad, (a, h), €) 

t(g?*(th,h),«) + (p+ (th, h),€), 

where again (2.14) has been used. It follows that 

(3. 11) grad), (g?** (th, h), h) (th, h) + (p + 1) g?**(th, h), 

11 The index h on d indicates that the differential operation refers to the variable h. 
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and we obtain finally from (3. 8)-(3. 11): 

(3.12) grad I(h) = g*(0,h)1/(p—1)! + (th, h) 
+ (p+ 1)g?"(th, h) Jat. 

Now from Lemma 2. 2 follows immediately the existence of a positive constant 

C, such that for small enough | h || 

(3. 18) 9?(0, h) | 1/(p—1) 
while 

(3. 14) norm of the integral in (3.12) =C, | h ||? 

On the other hand, since J is strictly non-degenerate of order p at 0, it follows 

from Lemma 2.8 (see esp. (2.18)) together with the (p—1)-linearity of 

(3. 15) | 97(0,h) | h (» > 0). 

Obviously (3.14), (3.15), and (3.12) together imply the existence of a 

postive constant C, such that for small enough || A | 

(3. 16) | (A) || = || grad || = Ce 

This finally proves the validity of (3.6) with C —C2p since by (3.3), 

We turn to the proof of the existence of a C’ > 0 such that (3.7) holds 

for small enough h satisfying (3.5). We set 

(3. 17) f(x) = (9*(2), 

where y(z) is defined in (3.2), and apply the Taylor formula (2.3), (2.4) 

with n = 2p —2 at ro. Since y(0) =o we obtain 

(3. 18) (g*(h), dif (0, h)/j! + 

(3. 19) (1 —t)2-2/(2p — 2) !d"*f(th, h) dt. 

We claim first that all terms of the sum in (3.18) are zero except for the last 

one, i.e., that 

(3. 20) dif(o,h) =0 for 7=1,2,- -,2p—3. 

261 
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To prove this we apply the Leibnitz rule (2.15) with 8(x) replaced by g'(z). 

We see from (3.3) that 

d'y(x,h) = ph(a, + p(p—2)a(z, (a, h). 

From this one proves easily by induction that d"y(2, h) is a linear combination 

with constant coefficients (i. e., coefficients independent of z and h) of terms 

of the form 

(3. 21a) h(a, (a, h)@(h, and x(a, (a, h) 2s, 

where a, 6; are non-negative integers satisfying 

(3.21b) 1+a,+4,—,.+ —r7, 

It follows that d*y(0,h) =o if a, for r= 0,1, 

-++,p—2, and (2.15) (with $= 4g") gives 

f 0 for 7 =0,1,---,p—2, 

yap 

where the @’s denote the binomial coefficients. We are interested in j-values 

= 2p—3 (cf. 3.20); for these j-values and the r appearing in the sum of 

(3.22) we have 0Sj—rS 2p—3— (p—1) —p—2. Therefore the 

right-hand member of (3.22) will be seen to be zero for 7 S 2p — 8, i.e., 

(3. 20) will be proved, once it is shown that 

(3. 23) d*g'(0,h) =o for s=0,1,:--,p—2. 

To prove (3. 23) we have only to observe that by Lemma 2. 3(b), d*g*(z, h) 

=g*(7,h). But g**(0,h) =o for s=0,1,---,p—2 by Lemma 2.8 

(equ. 2.16), which proves (3. 23). 

Thus (3.20) holds and (3.18) simplifies to 

(3. 24) (9° (h),y(h)) = (0, h)/(2p —2) 1+ Rap. 

We apply (3.22) for 7 —=2p—2. Then j—r—2%p—2—rSp—? 

for r=p. This together with (3.23) shows that (3.22) reduces to 

(3. 25) (0, hh) = h), h)). 

Now (3.21) shows that d?-*y(0,h) = C’:h(h, h)#, where a; = p—2 and 

C’, is a constant. Consequently we obtain from (3. 25) 

(0, hh) = 6°? 10", (h, h)*(h, d?-*g*(0, h)) 
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and by Lemma (2. 3b) 

(3. 26) h) — .0's(h, h)¥#*(g(0, h), h). 
If now (3.5) is satisfied we see from (3.8), (3.9), Lemma 2.2 and the 

Schwarz inequality that 

for some positive constant C’,. Therefore, (3.26) shows that 

| SC’s || h 

for a suitable C’; > 0. From this, (3.24), (3.19) and Lemma 2. 2 follows 

now obviously (3.7) for some C’ > 0. 

UNIVERSITY OF MICHIGAN. 

REFERENCES. 

{1] A. B. Brown, “ Relations between the critical points of a real analytic function of n 

independent variables,” American Journal of Mathematics, vol. 52 (1930), 

pp. 251-270. 

(2] L. M. Graves, “Riemann integration and Taylor’s theorem in general analysis,” 

Transactions of the American Mathematical Society, vol. 29 (1927), pp. 

163-177. 

{]3 T. H. Hildebrandt and L. M. Graves, “Implicit functions and their differentials in 

general analysis,” ibid., vol. 29 (1927), pp. 127-153. 

{4] M. Kerner, “ Die Differentiale in der allgemeinen Analysis,” Annals of Mathematics, 

vol. 34 (1933), pp. 546-572. 

[5] S. Mazur and W. Orlicz, “ Grundlegende Eigeuschaften der polynomischen Opera- 

tionen,” Studia Mathematica, vol. 5 (1934), pp. 50-68. 

[6] M. Morse, The Calculus of Variations in the Large, American Mathematical Society 

Colloquium Publications, vol. 18 (1934). 

{7] E. H. Rothe, “A relation between the type numbers of a critical point and the index 

of the corresponding field of gradient vectors,” Mathematische Nachrichten, 

vol. 4 (1950/51), pp. 12-27. 



ON THE EMBEDDING OF HYPERBOLIC LINE ELEMENTS; 

A CORRECTION.* 

By PHILIP HARTMAN AND AUREL WINTNER. 

In our papers appearing in vol. 72 (1950), pp. 553-566 and vol. 73 

(1951), pp. 876-884 of this Journal, which will be referred to as [1] and [2], 

respectively, we were dealing with the problem of local embedding of a binary 

ds* into a Euclidean 3-space in the three cases K > 0, K < 0, K =0 for the 

Gaussian curvature K of the ds*. We now see that the treatment of the 

second of these three cases, that is, of the hyperbolic case (K < 0), is vitiated 

by the proof given for the hyperbolic cases of Lemma 1 in [1]. The error 

is introduced at the end of the last sentence in that proof, lines 11-12 of p. 557, 

where it is implied that the integral representation of the solution of a hyper- 

bolic differential equation by Riemann’s function will produce a certain degree 

of differentiability. That such cannot be the case follows from the existence 

of “ discontinuity waves” of any given order. 

This has no bearing on the treatments of the elliptic (K >0) and 

parabolic (K =0) cases in [1] and in [2]. Thus, the elliptic and parabolic 

cases of the Theorem in [1], p. 554, are not affected, nor are those statements 

in [2] which deal with the elliptic and parabolic cases (namely, (I) on pp. 

876-877 and (iii) on p. 882) and the general theorems in [2], namely (i) on 

p. 879 and (ii) on p. 880. 

On the other hand, the hyperbolic case can today be treated only by 

making use of the general theory of hyperbolic systems, which leads to com- 

paratively high C"-assumptions, and our method does not contribute anything 

to this case. 
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